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Abstract
Factorization Machine (FM) is an effective solution
for context-aware recommender systems (CARS)
which models second-order feature interactions by
inner product. However, it is insufficient to capture
high-order and nonlinear interaction signals. While
several recent efforts have enhanced FM with neu-
ral networks, they assume the embedding dimen-
sions are independent from each other and model
high-order interactions in a rather implicit man-
ner. In this paper, we propose Convolutional Fac-
torization Machine (CFM) to address above lim-
itations. Specifically, CFM models second-order
interactions with outer product, resulting in “im-
ages” which capture correlations between embed-
ding dimensions. Then all generated “images” are
stacked, forming an interaction cube. 3D convo-
lution is applied above it to learn high-order inter-
action signals in an explicit approach. Besides, we
also leverage a self-attention mechanism to perform
the pooling of features to reduce time complexity.
We conduct extensive experiments on three real-
world datasets, demonstrating significant improve-
ment of CFM over competing methods for context-
aware top-k recommendation.

1 Introduction
Recommender system serves as an effective tool to predict
user behaviors, such as click/purchase on products, hav-
ing been extensively used in practical applications. When
characterizing user behavior data, besides the most essen-
tial information of user ID and item ID, rich context in-
formation is also available. Examples of contexts include
but are not limited to user demographics, item attributes,
time/location of the current transaction, historical records
and the information of last transactions [Bayer et al., 2017;
Wu et al., 2019]. To learn from such context-rich data, a
universal solution is to first convert it into high-dimensional
generic feature vectors (e.g., by using one-hot/multi-hot en-
coding on univalent/multivalent categorical variables) [Zhou
et al., 2018], and then build predictive models on the featured
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inputs [He and Chua, 2017]. Distinct from continuous real-
valued features that are naturally found in images and audios,
the featured inputs of CARS are mostly categorical, resulting
in high-dimensional yet sparse feature vectors. This poses
difficulties to build predictive models, such that traditional
supervised learning solutions such as SVMs and deep neural
networks are sub-optimal and less efficient, since they are not
tailored for learning from sparse data.

To design effective models for CARS, the key ingredient is
to account for the interactions among features [Wang et al.,
2017]. Existing solutions to feature interaction modeling can
be categorized into two types:

1. Manually constructing cross features. This type of meth-
ods manually construct combinatorial features, which explic-
itly encode feature interactions. Then the cross features are
fed into predictive models such as logistic regression [Cheng
et al., 2016] and deep neural networks [Wang et al., 2018].
Apparently, the cross feature construction process requires
heavy engineering efforts and domain knowledge, making the
solution less adaptable to other domains. In addition, another
drawback is that it cannot generalize to cold-start feature in-
teractions that are unseen in training data.

2. Automatically learning feature interactions. This type
of methods learn feature interactions and their effects in a
unified model. A typical paradigm is to associate each fea-
ture with an embedding, expressing the feature interaction as
a function over feature embeddings. For example, FM [Ren-
dle, 2010] models the interaction of two features as the in-
ner product of their embeddings, and Deep Crossing [Shan et
al., 2016] concatenates feature embeddings and feeds them
into a multi-layer perceptron (MLP) to learn high-order in-
teractions. However, these methods implicitly assume em-
bedding dimensions are independent from each other, which
goes against the semantics of latent dimensions [Zhang et al.,
2014] and limits the model expressiveness. Moreover, MLP
over embedding concatenation captures feature interactions
in a rather implicit manner, which has been manifested inef-
ficient to model multiplicative relations [Beutel et al., 2018].

In this paper, we focus on developing methods for CARS
with the aim of addressing the above-mentioned drawbacks of
existing solutions. To reduce engineering efforts in construct-
ing cross features, we explore embedding-based methods and
propose Convolutional Factorization Machine (CFM) which
automatically learns feature interactions. More precisely, fea-
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ture embeddings are firstly fed to a self-attention pooling
layer, which can dramatically reduce the computational cost
and debilitate the influence of noisy features. Then, we model
second-order interactions with outer product, resulting in a
list of 2D matrices, which is more effective to capture corre-
lations between embedding dimensions compared with inner
product. After that we stack the generated matrices and ob-
tain a 3D interactions cube that encodes all second-order in-
teractions. To explicitly learn high-order signals, we propose
to employ 3D convolution on the interaction cube, stacking
a multi-layer 3D convolution neural network (CNN) above
it. As a result, CFM addresses the major limitations of state-
of-the-art CARS methods — independent embedding dimen-
sions and implicit high-order interaction modeling. The main
contributions of this work are as follows:

• We propose to utilize an interaction cube to represent
feature interactions, which encodes both interaction sig-
nals and embedding dimension correlations.
• We propose to employ 3D CNN above the interaction

cube, which can effectively capture high-order interac-
tions in an explicit way. To the best of our knowledge,
this is the first attempt to explore 3D CNN in feature
interaction modeling.
• We leverage a self-attention mechanism to perform pool-

ing operations for features, reducing computational time
complexity.
• We conduct comprehensive experiments on publicly ac-

cessible datasets to comparatively evaluate and demon-
strate the effectiveness of the proposed method.

2 Preliminaries
Factorization Machine [Rendle, 2010; Rendle, 2012] is a
generic framework which integrates the advantages of flexi-
ble feature engineering and high-accuracy prediction of latent
factor models. In FM, every transaction is represented by a
multi-field categorical feature vector x ∈ Rm which utilizes
one-hot/multi-hot encoding to depict contextual information.
An example is illustrated as follows with three feature fields.

[0, 0, 0, 1, 0, 0, 0]︸ ︷︷ ︸
weekday=Thursday

[0, 1, ..., 0]︸ ︷︷ ︸
location=London

[1, 1, 0, ..., 0]︸ ︷︷ ︸
historical items (multi-hot)

The scoring function of FM is defined as

ŷFM (x) = w0 +

m∑
i=1

wixi +

m∑
i=1

m∑
j=i+1

xixj · 〈vi,vj〉, (1)

where w0 represents the global bias, wi represents the bias
factor for the i-th variable. The pairwise interaction of fea-
ture xi and xj is captured by a factorized parametrization
〈vi,vj〉 =

∑d
f=1 vifvjf , where 〈·, ·〉 denotes the inner prod-

uct of two vectors. vi ∈ Rd can be seen as the embedding
vector for feature xi.

Besides, Eq.(1) can be reformulated, resulting in linear
time complexity O(md) which makes FM applicable and ef-
ficient [Rendle, 2010]. However, the major drawback of FM
is that it only models the second-order feature interactions

in a linear way1, which is insufficient to learn complex (i.e.,
nonlinear and high-order) signals from real-world data. Al-
though several recent efforts have enhanced FM with neural
networks, like NFM [He and Chua, 2017] and DeepFM [Guo
et al., 2017], they assume the embedding dimensions are in-
dependent from each other and model high-order interactions
in a rather implicit manner.

3 Convolutional Factorization Machine
In this section, we present the details and the training proce-
dure of the proposed CFM model. We also analyze the rela-
tionship between CFM and some other similar research. Be-
fore diving into the technical details, we first introduce some
basic notations.

Throughout the paper, we use bold uppercase letter (e.g.,
M) to denote a matrix, bold lowercase letter to denote a vec-
tor (e.g., x), and calligraphic uppercase letter to denote a 3D
tensor (e.g., C). Scalar is represented by lowercase letters
(e.g., y). The target of CFM is to generate a ranked item list
for a given user context.

3.1 The CFM Model
It can been seen from Eq.(1) that the original FM only ac-
counts for second-order feature interactions in a linear way
by inner product, which fails to learn complex signals. To ad-
dress this problem, the prediction rule of CFM is formulated
as Eq.(2):

ŷCFM (x) = w0 +
m∑
i=1

wixi + gθ(x), (2)

where gθ(x) denotes the core component to model feature
interactions. In the following parts, we will elaborate how to
learn gθ(x) by outer product and 3D CNN, which explicitly
captures high-order interaction signals. Figure 1 illustrates
the overall structure of the proposed CFM model.

Input and Embedding Layer
The input layer is fed with a sparse contextual vector x, which
may contain both one-hot features (e.g., userID) and multi-
hot features (e.g., historical items) to describe a specific user
context and item attributes. Then each feature xi is projected
into a d-dimensional dense vector representation vi ∈ Rd by
the embedding layer. Due to the sparsity of x, we only need
to consider the non-zero features (i.e., xi 6= 0). This can be
easily achieved through an embedding table lookup.

Self-Attention Pooling Layer
In the real-world scenario, the number of non-zero features in
x may be very large, especially with various of multi-hot fea-
tures (e.g., historical items). The original time complexity to
account for all pairwise feature interactions is O(m2). Then,
FM utilizes a reformulation to rewrite Eq.(1) and makes the
time complexity to be linear with m. However, the involved
reformulation can only suit for inner product.

Compared with the large number of features, it’s obvious
that the number of fields is much smaller. As a result, an-
other solution to reduce computational cost is to perform the

1Although FM has high-order formulations [Rendle, 2010], it
still belongs to linear models and is proved to be difficult to estimate.
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Figure 1: CFM model structure. Field 1 and Field p contain multi-
hot features. Field 2 is one-hot in which e2=vn.

pooling operation on features and learn a single embedding
for each field. Intuitive approaches include max-pooling and
average-pooling. However, we argue that this kind of meth-
ods is sub-optimal due to the lack of learning process. To
capture the intuition that different features have varying im-
portance, we propose to use an attention mechanism to com-
pute the importance of each feature and perform the pooling
operation.

Suppose the set of non-zero features in field j is Xj , we
parameterize the attention score of feature xi ∈ Xj with a
MLP, which is defined as

ai = hTj tanh(Wjvi + bj), (3)

where Wj and bj are corresponding weight matrix and bias
vector that project the input embedding into a hidden state,
and hTj is the vector which projects the hidden state into the
attention score. The size of hidden state is termed as “at-
tention factor”. Then, the importance of xi is calculated by
normalizing the attention score through the softmax function:

αi = softmax(ai) =
exp(ai)∑

xi′∈Xj
exp(ai′)

. (4)

Finally, the after-pooling embedding ej for field j is formu-
lated as

ej =
∑
xi∈Xj

αivi. (5)

In fact, the self-attention pooling layer not only reduces the
computational cost but also debilitates the influence of noisy
features and redundant feature interactions.

Interaction Cube
After the pooling layer, we propose to use a 3D interaction
cube to represent feature interactions. Specifically, the in-
teraction between ei and ej is modeled by an outer product

······

······

······

······

······

64×64×45

32×32×32
16×16×16

8×8×8
4×4×4 2×2×2 1×1×1
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····· ····

Figure 2: The architecture of 3D convolution layers with embedding
size d = 64 and p = 10.

operation between them, as shown in Eq.(6).

Mi,j = ei ⊗ ej =


ei1ej1 ei1ej2 · · · ei1ejd
ei2ej1 ei2ej2 · · · ei2ejd

...
...

...
...

eidej1 eidej2 · · · eidejd

 (6)

The above d×dmatrix can be seen as a two-dimensional “im-
age” which contains both interaction signals and embedding
dimension correlations. Suppose the contextual vector x con-
tains p feature fields, the total number of generated “images”
is p(p − 1)/2. All these “images” are stacked to form a 3D
tensor C which is the input of the following 3D CNN.

C = [M1,2,M1,3, · · · ,Mi,j , · · · ,Mp−1,p] (7)

The major advantage of using this cube to represent feature
interactions lies in the following points:
• The outer product matrix is more effective to capture di-

mension correlations compared with conventional inner
and element-wise product, which assume that embed-
ding dimensions are independent with each other.
• The 3D structure provides an explicit solution to model

high-order interactions, which can be seen as interac-
tions between different “floors” of this cube. For exam-
ple, in Figure 1, the interaction between the first floor
(e1 ⊗ e2) and the second floor (e1 ⊗ e3) can be consid-
ered as a third-order interaction among e1, e2 and e3.
• The 3D format also provides a good input for the well

developed 3D CNN. While it’s designed for capturing
sequential patterns, its 3D architecture can also benefit
the modeling of high-order interactions, which can be
regarded as convolutions in the depth direction.

3D Convolution Layers
In order to tackle with the 3D interaction cube and extract
signals more effectively, a multi-layer 3D CNN is applied to
learn feature interaction patterns2. It can be abstracted as

g = 3DCNN(C). (8)

Suppose the embedding size d = 64 and the number of fea-
ture fields p = 10, the size of the interaction cube is 64 × 64
× 45. Figure 2 illustrates the structure of the stacked 3D CNN
with 6 hidden layers, where each hidden layer has 32 channels
and convolution operations are performed in all three direc-
tions (i.e., width, height and depth).

2Although multi-channel 2D CNN can also be used to process
the interaction cube, the 3D CNN is a more effective approach. Ex-
perimental results are shown in the following part.
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In each layer, we first perform 3D convolutions between a
3D kernel and the input cube, after which we add a bias and
perform a nonlinear transformation by using ReLU [Hahn-
loser et al., 2000] as the activation function to obtain a new
output cube. It’s obvious that the convolution in the depth
direction captures high-order feature interactions in a rather
explicit manner. According to Figure 2, the filter shape in
the first layer is [2,2,14] and the stride is [2,2,1], which is
corresponding to width, height and depth. In the subsequent
layers, the filter shape and stride are both [2,2,2].

The output of the 3D convolution layers is a vector g. Af-
ter that, we adopt a fully-connected layer to re-weight each
dimension of g and calculate a real-valued scalar as gθ(x):

gθ(x) = wTg + b. (9)

3.2 Training Details
The focus of CFM is generating top-k recommendation other
than rating prediction. Therefore, we optimize the proposed
CFM model with the BPR framework [Rendle et al., 2009]:

L =
∑
− lnσ(ŷCFM (x+)− ŷCFM (x−)), (10)

where x− is the sampled negative transaction corresponding
to the positive one x+, and σ is the sigmoid function. More
detailly, we first sample a mini-batch of positive user-item
transactions (i.e., x+), which contain feature vectors to de-
scribe specific user contexts and item attributes. Thereafter,
for every specific user context, negative items are randomly
sampled from a uniform distribution. Then we combine the
features of the sampled negative items and the corresponding
user context features to form negative user-item transactions
(i.e., x−). Finally, both positive and negative transactions
are fed to train the loss function defined in Eq.(10). Recent
works have demonstrated that an adaptive sampling distribu-
tion would result in better performance [Yuan et al., 2016],
while it’s not the focus of this work. We leave this explo-
ration as future work.

The embedding layer is pre-trained with FM using BPR
loss. To avoid overfitting, we involve L2 regularization on the
embedding layer, convolution layers and the fully-connected
layer. Besides, before the final fully-connected layer, a drop-
out layer is also inserted.

3.3 Discussion
Time Complexity
As described above, the depth of the interaction cube is p(p−
1)/2. Given the embedding size d, the time complexity to
perform 3D convolution is O(p2d2). Given the situation that
p� m, we can see that the major complexity comes from d2

which is introduced by the convolution. However, this burden
can be largely reduced through GPU acceleration.

The other part of complexity comes from feature pooling.
Assume the attention factor is n, the time complexity to cal-
culate attention is O(mnd). Therefore, the total time com-
plexity of CFM is O(p2d2 +mnd).

Relationship with Other Models
Neural factorization machine (NFM) [He and Chua, 2017]
is also proposed to address the linearity problem of FM. It

Dataset #users #items #transactions #fields
Frappe 957 4,082 96,203 10
Last.fm 1,000 20,301 214,574 4
MovieLens 6,040 3,665 939,809 4

Table 1: Datasets statistics.

introduces a MLP to learn high-order and nonlinear signals.
However, NFM is still based on inner product and MLP is
a rather implicit approach to capture high-order signals. Be-
sides, MLP is also much harder to train because of the need
of more parameters and even suffers from detrimental perfor-
mance when the network goes deeper [He and Chua, 2017].

Attention factorization machine (AFM) [Xiao et al., 2017]
is proposed to enhance FM by assigning different attentions
to different feature interactions. However, the major purpose
of attention mechanism in CFM is to perform feature pool-
ing and reduce computational cost. Besides, we argue that
the importance of feature interactions is automatically learned
through the convolution procedure of CFM.

Another related research is ONCF [He et al., 2018a], which
improves matrix factorization (MF) [Koren et al., 2009]
through outer-product. The main difference between ONCF
and CFM is that ONCF is based on MF but CFM is moti-
vated from FM. From this perspective, the relationship be-
tween CFM and ONCF is something like the relationship be-
tween FM and SVDFeature [Chen et al., 2012].

4 Experiments
In this section, we conduct experiments with the aim of an-
swering the following research questions:

RQ1: Does CFM model outperform state-of-the-art methods
for CARS top-k recommendation?

RQ2: How do the special designs of CFM (i.e., interaction
cube and 3DCNN) affect the model performance?

RQ3: What’s the effect of the attention-based feature pooling?

4.1 Experimental Settings
Data Description
To evaluate the performance of the proposed CFM model, we
conduct comprehensive experiments on three real-world im-
plicit feedback datasets: Frappe3, Last.fm4 and MovieLens5.
Table 1 summarizes the statistics of these datasets.

Frappe. This dataset is conducted by [Baltrunas et al.,
2015] to generate right app recommendations for right mo-
ments. Frappe contains 96, 203 app usage logs of different
user contexts. Each log contains 10 contextual feature fields
(i.e., p = 10) including user ID, item ID, daytime and some
other information.

Last.fm. The Last.fm dataset is for music recommendation.
We extract the latest one day listening history of 1,000 users.
The user context is described by user ID and the last music
ID that the user has listened within 90 minutes. The item
attributes include music ID and artist ID.

3http://baltrunas.info/research-menu/frappe
4http://www.dtic.upf.edu/ ocelma/MusicRecommendationDataset
5https://grouplens.org/datasets/movielens/latest/
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MovieLens. The original MovieLens dataset is designed
for explicit rating prediction. Here we binarize it into im-
plicit feedback. The user context is described by user ID and
historical items (multi-hot). The item feature is composed of
movie ID and movie genres (multi-hot).

Evaluation Protocols
We adopt the leave-one-out evaluation to test the performance
of models, which has been widely used in literature [He et al.,
2017; Yuan et al., 2016; He et al., 2018b]. More specifically,
for Last.fm and MovieLens, the latest transaction of each user
is held out for testing and the remaining data is treated as
the training set. For the Frappe dataset, because there is no
timestamp information so we randomly select one transaction
for each specific user context as the test example.

The recommendation quality is evaluated by Hit Ratio
(HR) and Normalized Discounted Cumulative Gain (NDCG).
HR@k is a recall-based metric, measuring whether the test
item is in the top-k positions of the recommendation list (1
for yes and 0 otherwise). NDCG@k are weighted versions
which assign higher scores to the top-ranked items [Järvelin
and Kekäläinen, 2002].

Baselines
We implemented CFM6 using TensorFlow. We compare the
performance of CFM with the following baselines:

• PopRank: This method returns top-k most popular
items. It acts as a basic benchmark.

• FM: The original factorization machine [Rendle, 2010]
trained by BPR loss [Rendle et al., 2009].

• NFM: Neural factorization machine [He and Chua,
2017] is a strong baseline which uses a MLP to learn
nonlinear and high-order interaction signals.

• DeepFM: This method [Guo et al., 2017] ensembles the
original FM and a MLP to generate recommendation.

• ONCF: This method [He et al., 2018a] is a newly pro-
posed algorithm which improves MF with outer product.

Parameter Settings
To fairly compare the performance of models, we train all
of them by optimizing the BPR loss with mini-batch Ada-
grad [Duchi et al., 2011]. The learning rate is searched be-
tween [0.01,0.02,0.05] for all models. The batch size is set
as 256. For all models except PopRank and FM, we pre-
train them using the original FM with 500 iterations. The
dropout ratio for NFM, DeepFM, ONCF, and CFM is tuned
in [0.1,0.2,···,0.9]. The embedding size and attention factor is
set as 64 and 32, respectively. The output channels of CNN-
based models (i.e., ONCF and CFM) are set as 32. Regarding
NFM, the number of MLP layers is set as 1 with 64 neurons,
which is the recommended setting of their original paper [He
and Chua, 2017]. For the deep component of DeepFM, we set
the MLP according to their original paper [Guo et al., 2017],
which has 3 layers and 200 neurons in each layer.

6Codes are available at https://github.com/chenboability/CFM

Because the number of feature fields p differs between dif-
ferent datasets, the sizes of interaction cubes are also differ-
ent, resulting in different kernel sizes and strides of 3D con-
volution layers7. More specifically, we use the structure il-
lustrated in Figure 2 on the Frappe dataset. For Last.fm and
MovieLens, the filter shape is [2,2,2] and the stride is [2,2,1]
for all six layers.

4.2 Performance Comparison (RQ1)
Table 2 shows the top-k recommendation performance on all
three datasets. It’s obvious that CFM achieves the best perfor-
mance on all datasets regarding to both HR and NDCG. We
argue that this significant improvement lies in the following
basements: 1) The outer product-based interaction cube is a
fairly good approach to represent feature interactions. This
can be seen from the comparison between CFM and NFM,
which uses inner product-based pooling vectors to present
feature interactions. 2) The involved 3D CNN is more ef-
fective to extract signals compared with 2D CNN (ONCF)
and MLP (NFM, DeepFM), especially for high-order interac-
tions.

Among the baselines, we can see that both NFM and
DeepFM achieve better performance than original FM. The
reason is that they involve MLP to learn nonlinear and high-
order interaction signals. However, their methods are too im-
plicit and MLP is also harder to train compared with the local
connected CNN.

4.3 Model Investigation (RQ2)
Study of the Interaction Cube
To further demonstrate the effectiveness of interaction cube,
we convert it to a 2D feature map through two different opera-
tions. The former is to tile the generated matrices (i.e., Mi,j)
to form a bigger feature map (tiled)8. The latter is to per-
form a max pooling operation on its depth direction (pooling).
Then we use a 6-layers 2D CNN to learn signals from the
map. Figure 3a shows the results on Frappe. We can see that
CFM achieves better performance than the tiled method. The
reason is the stacked 3D architecture provides a rather explicit
approach to model high-order interactions. Besides, we can
also see that the max pooling operation will definitely down-
grade the performance because it only considers the most im-
portant information. However, the performance is still better
than the original FM, which demonstrates the effectiveness of
outer product and the strong learning capability of CNN.

Study of 3D CNN
To tackle with the 3D interaction cube, another solution is
to use multi-channel 2D CNN (MCNN). Here, we also con-
duct experiments to make a comparison between them. Fig-
ure 3b illustrates the results on the Frappe dataset. We can see
that compared with MCNN, our CFM achieves better perfor-
mance. The reason is that the convolution in the depth di-
rection of 3DCNN explicitly models high-order feature inter-
actions while MCNN cannot achieve this in such an explicit
manner.

7Another approach is to use padding so that the settings of CNN
layers can be fixed.

8For Frappe, the size of feature map is 320×576 = 64×64×45.
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HR Frappe Last.fm Movielens

HR@5 HR@10 HR@20 HR@5 HR@10 HR@20 HR@5 HR@10 HR@20

PopRank 0.2539 0.3493 0.4136 0.0013 0.0023 0.0032 0.0121 0.0235 0.0429
FM 0.4204 0.5486 0.6590 0.1658 0.2382 0.3537 0.0512 0.0998 0.1762
DeepFM 0.4632 0.6035 0.7322 0.1773 0.2612 0.3799 0.0563 0.1170 0.2033
NFM 0.4798 0.6197 0.7382 0.1827 0.2676 0.3783 0.0634 0.1192 0.2029
ONCF 0.5359 0.6531 0.7691 0.2183 0.3208 0.4611 0.0579 0.1110 0.2002
CFM∗ 0.5462 0.6720 0.7774 0.2375 0.3538 0.4841 0.0697 0.1323 0.2248

NDCG Frappe Last.fm Movielens

NG@5 NG@10 NG@20 NG@5 NG@10 NG@20 NG@5 NG@10 NG@20

PopRank 0.1595 0.1898 0.2060 0.0007 0.0011 0.0013 0.0071 0.0107 0.0156
FM 0.3054 0.3469 0.3750 0.1142 0.1374 0.1665 0.0295 0.0452 0.0644
DeepFM 0.3308 0.3765 0.4092 0.1204 0.1473 0.1772 0.0355 0.0526 0.0723
NFM 0.3469 0.3924 0.4225 0.1235 0.1488 0.1765 0.0374 0.0553 0.0748
ONCF 0.3940 0.4320 0.4614 0.1493 0.1823 0.2176 0.0343 0.0514 0.0738
CFM∗ 0.4153 0.4560 0.4859 0.1573 0.1948 0.2277 0.0426 0.0627 0.0858

Table 2: Comparison between different models when generating top-k recommendation. k ∈ {5, 10, 20}. Boldface denotes
the highest score. ∗ denotes the statistical significance for p < 0.05 compared with the best baseline. NG is short for NDCG.

(a) interaction cube (b) 3D CNN
Figure 3: Study of interaction cube and 3D CNN

4.4 Study of Feature Pooling (RQ3)
The proposed CFM leverages a self-attention mechanism to
perform feature pooling. To demonstrate the effectiveness of
the involved attention mechanism, we replace it with max-
pooling and mean-pooling. Table 3 shows the results on
MovieLens. We can see that mean-pooling achieves bet-
ter performance than max-pooling because max-pooling only
considers the most important feature and lots of information
is discarded. However, the attention-based CFM achieves the
best performance. In fact, the attention-based feature pooling
automatically assigns different importance to different fea-
tures. It can not only retain the rich feature information but
also debilitate the noise influence.

Table 4 shows the comparison between CFM with and
without feature pooling on MovieLens dataset. We can see
that the attention-based feature pooling can dramatically re-
duce the training time without affecting the model perfor-
mance. It can even result in better recommendation quality.

5 Conclusion
In this work, we propose a novel context-aware recommenda-
tion algorithm CFM, which seamlessly combines automatic
feature interaction modeling of FM and strong learning capa-
bility of 3D CNN. The key design of CFM is to use an outer
product-based interaction cube to represent feature interac-

Model HR@10 HR@20 NG@10 NG@20

Max 0.1257 0.2142 0.0591 0.0813
Mean 0.1291 0.2212 0.0603 0.0833
CFM 0.1323 0.2248 0.0627 0.0858

Table 3: Effect of self-attention. Max and Mean denote re-
placing the self-attention with max-pooling and mean-pooling,
respectively. NG is short for NDCG.

Indicator FM CFM CFM-wfp

Time(min) 0.53 4.63 50.52
HR@10 0.0998 0.1323 0.1297
NG@10 0.0452 0.0627 0.0605

Table 4: Effect of feature pooling. CFM-wfp denotes the
CFM model without feature pooling. Time denotes the run-
ning time for one single iteration. NG is short for NDCG.

tions and then utilize 3D CNN to extract signals from it. As
a result, correlations among embedding dimensions can be
effectively captured and higher-order interaction signals can
also be learned in a rather explicit approach. Besides, we also
utilize a self-attention mechanism to perform feature pool-
ing and reduce computational cost. Extensive experiments
on three datasets demonstrate that CFM has superior perfor-
mance compared with state-of-the-art models when generat-
ing top-k recommendation. Future work includes using more
advanced techniques, such as residual learning [He et al.,
2016a; He et al., 2016b], to better extract signals. Besides,
we are also interested in developing more rational methods to
further improve the efficiency of CFM.
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