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ABSTRACT
Representation learning is the keystone for collaborative filtering.
The learned representations should reflect both explicit factors that
are revealed by extrinsic attributes such as movies’ genres, books’
authors, and implicit factors that are implicated in the collaborative
signal. Existing methods fail to decompose these two types of fac-
tors, making it difficult to infer the deep motivations behind user
behaviors, and thus suffer from sub-optimal solutions. In this paper,
we propose Decomposed Collaborative Filtering (DCF) to address
the above problems. For the explicit representation learning, we
devise a user-specific relation aggregator to aggregate the most
important attributes. For the implicit part, we propose Decomposed
Graph Convolutional Network (DGCN), which decomposes users
and items into multiple factor-level representations, then utilizes
factor-level attention and attentive relation aggregation to model
implicit factors behind collaborative signals in fine-grained level.
Moreover, to reflect more diverse implicit factors, we augment the
model with disagreement regularization. We conduct experiments
on three public accessible datasets and the results demonstrate the
significant improvement of our method over several state-of-the-art
baselines. Further studies verify the efficacy and interpretability
benefits bought from the fine-grained implicit relation modeling.
Our Code is available on https://github.com/cmaxhao/DCF.
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1 INTRODUCTION
Recommender systems have been widely applied in web applica-
tions to overcome information overload and meet user’s personal
interests. One of the most successful techniques for recommender
systems is collaborative filtering (CF), which assumes that the user
preference can be aggregated from historical interacted items (item-
based CF) or similar users (user-based CF). The keystone when
training model-based CF methods is the construction of item and
user representations. After that, the prediction score can be ob-
tained through the interactions (e.g., inner product [13] or neural
networks [8]) between user and item representations.

In real-world scenarios, the motivations behind user’s decisions
are complex and obscure. They can be motivated from extrinsic
attributes. For example, a user may watch a fiction movie because
he is a fan of this genre. They can also root from implicit factors
implicated from the collaborative signal (co-interaction pattern)
[30]. To better capture user preference, the learned representations
should reflect both the explicit and implicit factors.

Conventional CF methods based on pure user-item interactions
can only model the implicit factors. The co-interaction patterns
revealed from implicit factors are coarse-grained and it’s not con-
vincing to provide user recommendations based on the explanation
like “similar users also bought this”. Recent works [25] attempt to
model implicit factors in fine-grained level. However, it’s still hard
to find concrete semantic meaning for them, resulting in the diffi-
culty of providing convincing and explainable recommendations.

Incorporating side information such as user profile and item
description as explicit factors into the training of recommender
systems becomes more common. Knowledge graphs (KGs) con-
tain abundant semantic meaningful facts and relations, provid-
ing a natural solution to model explicit factors in CF. Plenty of
researches [2, 23, 33] have been done to exploit KGs for recom-
mendation. These works can be categorized into embedding-based
methods and path-based methods [30]. Most of embedding-based
methods [2, 23] introduce tasks from KG domain (e.g., relation
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completion) as auxiliary tasks to guide the representation learning.
However, they are not end-to-end fashions and whether the KG
domain tasks conform to the nature of recommendation still needs
to be investigated. Path-based methods [9, 21] extract paths or
meta-paths from KGs. However, it’s not scalable in practical usage
because of the huge amount of items (users). Besides, most of these
methods fail to consider fine-grained implicit factors which may
still constitute the majority of motivations behind user behaviors.
In fact, the explicit factors and implicit factors entangle with each
other and affect the user’s decision collaboratively.

Considering the limitations of existing methods, we believe that
it’s vital to develop a model that can capture fine-grained implicit
and explicit factors behind user behaviors in a generalized and
end-to-end manner. In this paper, we seamlessly unify user-item in-
teraction graph and KG to construct a Collaborative Relation-aware
Graph (CRG) which can be regarded as a kind of heterogeneous in-
formation network (HIN) [19]. CRG contains two types of relations
between nodes: fine-grained implicit relations behind Interaction
and explicit relations, as illustrated in Figure 1. We propose De-
composed Collaborative Filtering (DCF) to model the fine-grained
implicit relations behind Interaction and explicit relations on CRGs.
More precisely, for the explicit part, we devise a user-specific rela-
tion aggregator to mine the most important explicit motivations
from user behaviors. Tomodel implicit relations, we first decompose
users and items into multiple fine-grained representations related
to implicit relations, called factor-level representations. Then, we
utilize factor-level attention to learn probability distribution over
all implicit factors for each interacted item and then sum them up
to formulate the representations of implicit factors. After that, we
utilize attentive relation-wise aggregation to sum up these implicit
factors as the final implicit representation. To avoid the issue that
these implicit factors are reflecting similar motivations, we add
disagreement regularization to guide them to learn more diverse
representations. In addition, we unify fine-grained implicit relation
aggregator and explicit relation aggregator as a generalized form
to capture high-order connectivity for users and items. Generally
speaking, our method can even infer potential semantic meaning for
the implicit factor that drives user to choose the item. Our proposed
method DCF is superior to existing methods in that: 1) we unveil the
fine-grained implicit factors behind the interactions between users
and items; 2) and we propose a generalized relation aggregator to
aggregate neighbors for exploiting high-order connectivity, inde-
pendent of tedious process of materializing meta-paths and specific
formula term. The contributions of our paper are summarized as
follows:

• Wepresent DecomposedGraphConvolutional Network (DGCN),
which can capture fine-grained implicit factors behind user
behaviors based on factor-level attention and attentive rela-
tion aggregation.

• We propose a new method DCF, which unifies fine-grained
implicit relations modeling and explicit relations modeling
as a generalized graph convolutional operation, and it can be
stacked in multiple layers to exploit high-order connectivity.

• We conduct extensive experiments on three public datasets
to evaluate our proposed method. Experimental results show
the effectiveness and interpretability of DCF.

2 RELATEDWORK
Collaborative Filtering. The key of CF is to model user prefer-

ences based on similar users or items [17]. The most representative
CF-based method is MF [13] which projects each user and item into
latent representations and then utilizing inner product between
them to obtain the predicted score. FISM [10] is an item-based CF
model which characterizes the user representation as the mean
aggregation of item embeddings which occur in his interaction
history. Plenty of work has been done to enhance CF, such as in-
corporating user-specific information [4] and introducing local
latent space [3]. Recently, utilizing the expressive deep learning
approaches for CF has also become a hot research topic because
of its effective feature extraction and end-to-end model training.
NAIS [7] enhances FISM by replacing the mean aggregation with
attention-based summation.

GraphLearning forRecommendation. With the great achieve-
ments in Graph Neural Networks (GNNs) [6, 12, 20], recent works
have tried to apply GNNs in recommender system to learn better
representations of users and items, especially when incorporating
with KGs. SpectralCF [34] proposes a spectral convolution operation
to learn latent factors of users and items from the spectral domain.
PinSage [32] adopts GraphSAGE [6] on item-item graph to generate
large-scale image recommendations. GC-MC [28] employs a graph
convolutional autoencoder to construct embeddings of users and
items. NGCF [24] proposed to use element-wise product between
two connected nodes for explicitly conserving collaborative signals
with message passing.

However, the above approaches ignore to capture the fine-grained
implicit factors implicated in the collaborative signal. Although side
information like KGs help to improve the recommendation qual-
ity [22, 23], the implicit factors still account for an important part
to affect user behavior. DisenGCN [15] performs neighborhood
routing to infer the latent factor behind the connectivity between
two nodes in the graph. However, DisenGCN fails to make the
disentangled representation distinct with each other and it’s not
designed for recommendation tasks in HIN.

3 PROBLEM FORMULATION
Collaborative Relation-aware Graph. In a typical recommen-

dation scenario, we have historical interactions (e .д., clicks and pur-
chases) of users and items. Then we construct historical interaction
data as user-item bipartite graph G1 = {(u,yuv ,v)|u ∈ U,v ∈ V},
where U and V denote user and item set, respectively. If there
exists an observed interaction betweenu andv then yuv = 1, other-
wise yuv = 0. In addition to the user-item bipartite graph, we also
have a knowledge graph G2 that describes the relationship between
items and side information (e.g. item attributes). G2 comprises of
triples (h, r, t), where h, t ∈ E ′ and r ∈ R+. Hereh and t denote head
entity and tail entity, respectively. E ′ is the Entity set, r denotes
relation type. We define explicit relation set R+ to represent the
relationships in KG. For example, the triplet (The Million Pound Note,
book.book.author, Mark Twain) means The Million Pound Note’s au-
thor is Mark Twain. Considering that the user behavior can also be
formulated as a triplet (u, Interaction,v) and the item v can occur
as the head entity in the KG, we integrate user-item graph and KG as
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Figure 1: An example of collaborative relation-aware graph.
r0 = 1 represents the user-item interaction. In the right part
we replace Interaction with fine-grained implicit relations
(k1,k2,k3,k4) and the most important ki factor determines
the reason why the user choose a specific item.

a unified graph G = {(h, r , t)|h, t ∈ E, r ∈ R}1, where E = U ∪ E ′

and R = R+ ∪ {Interaction}, here Interaction = 1 if u interacts
with v . The left part of Figure 1 illustrates an example of CRG, the
explicit relations (r1, r2, r3) ∈ R+ and r0 = 1 represents the user-
item interaction. Since the motivation behind user’s choice of a
specific item is complex, we replace the Interaction set by defining
an implicit relation set R−, then, the whole relation set of CRG is
defined as R = R+ ∪ R−. The right part of Figure 1 illustrates the
fine-grained implicit relations in CRG. (k1,k2,k3,k4) ∈ R− repre-
sents four different underlying factors, and the most important ki
factor determines the reason why the user choose a specific item.

TaskDescription. Given the collaborative relation-aware graph
G, our purpose is to predict the probability that user u will interact
item v via learning a prediction function

ŷuv = F (u,v |G,Θ), (1)

where Θ denotes the parameters of prediction function F .

4 METHOD
In this section, we demonstrate the detail of our proposed method
DCF which consists of two main components: 1) implicit relations
modeling, which first decomposes users and items embeddings
into multiple fine-grained factor-level representations, then em-
ploys factor-level attention and attentive relation-wise aggregation
to model fine-grained implicit factors behind the interactions; 2)
explicit relations modeling, which employ user-specific relation
aggregator to model fine-grained explicit factors.

4.1 User-Item Implicit Relation Modeling
Recap the widely used relation-aware aggregator [31] which con-
siders relation type when aggregating node’s local neighborhood.
Given embedding eu of user u and embedding of nodes in its
relation-ware neighborhood {ei |∀i ∈ Nr

u }, here Nr
u are neigh-

bor nodes of u. Then relation-aware aggregator for relation r is
calculated by σ (Wr (eu +

∑
i ∈Nr

u
αi ,r ei )), where σ is a nonlinear

activation function, Wr is the transformation weight, and αi ,r =
1

|Nr
u |
.Relation-aware aggregator is simple but effective on learning

1CRG is treated undirected.

representations for nodes in HIN [31]. However, it heavily depends
on the preset meta-paths to capture the high-order connectivity,
which is not scalable in practical usage, and it’s unable to han-
dle fine-grained implicit relations behind the interactions between
users and items. To model more fine-grained relationships behind
Interaction, we design a Decomposed Graph Convolutional Net-
work (DGCN), as shown in Figure 2.

4.1.1 Implicit Factors Decomposition. Given a specific user u
and his interacted items set Nu = {i |yui = 1}, we can get their
initial embedding eu ∈ Rd and {ei ∈ Rd |i ∈ Nu } via simple em-
bedding look-up operations. Supposed that there are K implicit
relations behind the interaction, we can obtain user fine-grained
representation over k-th relation through projecting eu into corre-
sponding relation space:

zu ,k = σ
(
W⊤

k eu + bk
)
,k = 1, 2, ..,K, (2)

where Wk ∈ Rd×d is transformation weight, bk ∈ Rd is bias term,
σ (·) is nonlinear activation function. Obviously, zu ,k is also the
factor-level representation of user u over implicit factor k , which
motivates user’s decisions when choosing items. Analogously, we
can also get k-th fine-grained representation for item i as zi ,k via
similar operation:

zi ,k = σ
(
W⊤

k ei + bk
)
,k = 1, 2, ..,K . (3)

Note that parameters Wk and bk are shared for the user and item
in same relation space.

4.1.2 Factor-level attention network. After constructing fine-
grained implicit representations over different factors for both the
user and interacted items, we aim to aggregate the items that are
interacted due to the same implicit relation. We can assume that
the reason behind the interaction between user u and item i is that
the item implicit representation pertinent to factor k “attracts” the
user. It is obvious that different items may be interacted due to
different factors. To this end, we calculate a relation distribution
vector pui = [pui ,1, p

u
i ,2, p

u
i ,3, ..., p

u
i ,K ] for each interacted item,

each element of which is calculated by:

p̃ui ,k = ReLU (W⊤
p [zi ,k , zu ,k ] + bp ), (4)

pui ,k =
exp(p̃ui ,k )∑K

k ′=1 exp(p̃
u
i ,k ′)
,∀i ∈ Nu , (5)

where [·, ·] denotes the concatenate operation, Wp and bp are
transformation weight matrix and bias term. pui ,k is the probability
that factor k is the reason why user u interacts item i , which only
depends on the correlation between their factor-level representa-
tions. Obviously, the larger pui ,k is, the more likely we choose item
i to construct ouk which is the representation of implicit factor k
for user u. Then we obtain ouk by aggregating the neighborhood
representations related to factor k :

ouk = ReLU (zu ,k +
∑
i ∈Nu

pui ,k zi ,k ),k = 1, 2, ..,K (6)

In order to balance the influence of different neighbor numbers
and make the computation more efficient, Nu is constructed by
sampling a fixed number of neighbors.
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Figure 2: Illustration of the Decomposed Graph Convolutional Network (DGCN), taking user node as example (K = 4). It takes
user embedding and embeddings of interacted items as input, and output updated user embedding.

It’s technically difficult to discretely separate the interacted items
according to different implicit factors. So we transform such prob-
lem to learn the probability distribution over each factor for each
interacted item, and Section 5.5 bears out the feasibility of this
method.

4.1.3 Attentive implicit relation-wise aggregation. We need
to fuse representations of implicit factors to formulate updated user
representation, and a straightforward solution is to apply average
pooling operation on them. Considering different implicit factors
have different importance for users while choosing items, we utilize
the attention mechanism to learn the importance of each implicit
relation, which is defined as follows:

β̃uk = ReLU (Wouk + b), (7)

whereW andb are transformweightmatrix and bias term. Note that
W and b are shared parameters among the all implicit relations.
Then, the importance of each implicit relation is calculated by
normalizing the attention value through the softmax function:

βuk =
exp(β̃uk )∑

k ′∈R− exp(β̃uk ′)
. (8)

We combine all representations of implicit factors with attention
weight to form the updated user representation, as follows:

e′u = σ (
∑
k ∈R−

βuk o
u
k ). (9)

4.1.4 Disagreement regularization. To make the implicit fac-
tor distinct with each other and contain more diverse semantic
information, we introduce disagreement regularization to guide
the training of related fine-grained representations. We first utilize
cosine distance [14] which is defined as the cosine similarity (i.e,
cos(·)) on pairwise implicit factors. Our training objective is to di-
minish the cosine distance among each pairwise implicit factors

for all users and items, then the regularization term is defined as:

Ldr_cos =
∑

x ∈U∪V

K∑
k1=1

K∑
k2=k1+1

oxk1 ⊙ oxk2
| |oxk1 | | · | |o

x
k2
| |
, (10)

where ⊙ denotes inner-product operation.
In fact, we can also keep the separated ok to be orthogonal with

each other (i.e., ok1 ⊙ ok2 ≈ 0, where 1 ≤ k1,k2 ≤ K and k1 , k2)
to achieve our goals. As a result, we define such strategy as the l2
norm of the inner-product between pairwise ok :

Ldr_inner =
∑

x ∈U∪V

K∑
k1=1

K∑
k2=k1+1

oxk1 ⊙ oxk2


2
. (11)

Moreover, the time complexity of calculating Ldr_inner can be
reduced from O(K2) to O(K), as follows:

Ldr_inner =
1
2

∑
x ∈U∪V

( K∑
k=1

oxk
)2

−

K∑
k=1

(oxk )
2


2

. (12)

Therefore, Ldr_inner is chosen as the disagreement regularization
in our paper due to its linear computational complexity.

4.2 Explicit Relation Modeling
Despite the implicit factors revealed in the collaborative signals
which can be modeled through DGCN, the explicit factors can be
captured via modeling explicit relations. Knowledge Graph Embed-
ding (KGE) is an effective approach to model item explicit repre-
sentation from relations between entities. The most representative
method is TransE [1] which learns the embeddings of entities and
relations via assuming eh+er ≈ et when (h, r, t) holds. eh, er and et
are corresponding embeddings. However, existing methods [23, 30]
rely on constructing additional loss based on this formula, which is
more suitable for KG completion task rather than recommendation.
Taking the inspiration from recent works [18, 20], we devise a user-
specific relation aggregator to model explicit relations. Given a head
entityh (corresponding to an itemv), we sample a set of tail-relation
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pairs N+h = {(r , t)|(h, r , t) ∈ G ∧ r ∈ R+} and a set of implicit rela-
tion neighbors N−

h = {t |(h, r , t) ∈ G ∧ r ∈ {Interaction}}. We use
the user embedding as a context input to decide the importance of
this tail-relation pair:

π̃ (u, r , t) = e⊤u (er + et ). (13)

Here, the embedding of tail (i.e., et ) serves as a fine-tuning part
for the relation r because relying only on modeling relation r can
not completely reflect explicit factors. For example, a user may be
interested in a movie that shares the same actor with some movies
in his historical records. However, the film has numerous actors,
while the user prefers only one of them. In that case, the relation
is “is acted by” and the tail is the specific actor. Then, we can get
user-specific attention scores through a so f tmax operation:

π (u, r , t) =
exp(π̃ (u, r , t))∑

(r ′,t ′)∈N+h
exp(π̃ (u, r ′, t ′))

. (14)

To encode the connectivity structure in the CRG for the head h
(item), we perform weighted sum among its explicit relation neigh-
bors:

eN+h =
∑

(r ′,t ′)∈N+h

π (u, r ′, t ′)et ′ . (15)

We combine explicit relation modeling part and implicit rela-
tion modeling part to denote item representation, which can be
formulated as:

e′v = σ (Waдд(eh + eN+h ) + f (eh, {et |t ∈ N−
h })), (16)

where Waдд is transformation weight, σ is the nonlinear activa-
tion function, and f (·) is DGCN layer. Similar to N−

h , N
+
h is also

constructed by sampling a fixed number of neighbors.

4.3 High-order Connectivity Modeling
In practice, mining information beyond local neighborhoods may
be desirable to capture more influential signals. For example, u1 →
v1 → u2 may reflect the similar fine-grained implicit relation be-
tween (u1,v1) and (u2,v1); v1

r1
−→ t1

r1
−→ v2 suggests the similar

representations for item v1 and item v2. To this end, we unify
fine-grained implicit relation aggregation and explicit relation ag-
gregation in a generalized form to capture high-order connectivity
for node h in CRG, and the l-th aggregation is formulated as:

e(l )h = σ (
∑

k ∈R+∪R−

γ
(l )
k (

∑
j ∈Nk

h

α
(l )
j ,kW

(l )
k e(l−1)j +W(l )

k e(l−1)h )), (17)

where e(l−1)h is the output of previous propagation layer for node

h, and e(0)h is the initial embedding. For k ∈ R−, Nk
h is the set of

implicit relation neighbors, α (l )j ,k and γ (l )k are calculated by Eq.(4) ∼

Eq.(5) and Eq.(7) ∼ Eq.(8), respectively. For k ∈ R+,Nk
h is the set of

explicit relation neighbors and α (l )j ,k is obtained by Eq.(13) ∼ Eq.(14).

We set γ (l )k = 1 and W(l )
k =W(l )

aдд for ∀k ∈ R+.

4.4 Model learning
After stacking L layers for capturing high-order connectivity for
users and items, we can obtain representations for useru in different
layers, namely {e(0)u , e

(1)
u , ..., e

(L)
u }; analogous to itemv , {e(0)v , e

(1)
v , ..., e

(L)
v }

are obtained. To make full use of connectivity information of dif-
ferent orders, we adopt summation operation among each layer of
outputs of user u and item v to represent their embeddings:

u = e(0)u + e
(1)
u + ... + e

(L)
u , v = e(0)v + e

(1)
v + ... + e

(L)
v , (18)

After constructing the representations of user and item, we use
inner-product between them to predict the probability:

ŷuv = σ (uTv) (19)

Then, the complete objective function of our proposed method is
defined as follows:

L =Lr s + λ1Ldr_inner + λ2Lr eд

=
∑

u ∈U,v ∈V

J(ŷuv ,yuv )

+
λ1
2

∑
x ∈U∪V

( K∑
k=1

oxk
)2

−

K∑
k=1

(oxk )
2


2

+ λ2 ∥Θ∥2

(20)

where J is the cross-entropy loss function, Θ is the total learning
space which contains all embeddings and network parameters. λ1
and λ2 are hyper-parameters that control the importance of dis-
agreement regularization and l2 regularization, respectively. DCF
is optimized by mini-batch Adam [11] optimizer, which is able to
adaptively control the learning rate.

5 EXPERIMENTS
In this section, we present the details of the experiment setups
and the corresponding results on three datasets. We start with four
research questions (RQ) to lead the experiments:

RQ 1: Does our proposed method outperforms other state-of-
the-art methods on two recommendation scenarios (top-N recom-
mendation and CTR prediction)?

RQ2:How do some hyper-parameters affect model performance,
such as the number of implicit relations, the neighbor sampling
sizes and high-order connectivity modeling?

RQ 3:How do different components affect our proposed method,
such as fine-grained implicit relations modeling, disagreement reg-
ularization and user-specific relation aggregator?

RQ 4: Can DCF provide qualitative analyses of learned represen-
tations with regard to fine-grained implicit factors and explainable
recommendations for users?

5.1 Experimental Setting
5.1.1 Datasets. We utilize the following three datasets in our ex-
periments to verify DCF’s effectiveness:

• MovieLens-20M2 is a widely used benchmark dataset in
movie recommendations, which contains approximately 20
million explicit ratings from 138000 users on 27000 movies.
The rating ranges from 1 to 5.

• Book-Crossing 3 contains 1,149,780 ratings from 278,858
users in Book-Crossing community.

2https://grouplens.org/datasets/movielens/
3http://www.informatik.uni-freiburg.de/∼cziegler/BX/
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Table 1: Statistics and hyper-parameter settings for the three
datasets (d : dimension of embeddings).

Movie Book Music
# users 138159 17860 1872
# items 16954 14967 3846

# interactions 13501622 139746 42346
# entities 102569 77903 9366

# explicit relations 32 25 60
# KG triples 499474 151500 15518

d 32 64 64
batch size 16384 256 256

learning rate 10−3 5 × 10−4 10−3
λ1 5 × 10−6 2 × 10−5 10−4
λ2 10−6 2 × 10−5 10−4

• Last.FM4 is a widely used benchmark in music recommenda-
tions, which contains 1892 users’ artists listening informa-
tion from Last.fm online website.

Since three datasets are originally in rating format, we follow the
procedure of [22] to convert explicit ratings to binary feedback (posi-
tive and negative). For each user, we randomly sample same amount
of negative samples as their positive samples from unobserved in-
teractions. We also filter low-frequency users and items. Similar
to [21], we use Microsoft Satori5 to build the KG for each dataset.
We first find the triples with relation name contains "item" from the
KG and filter out the triples whose confidence level is lower than 0.9.
We collect IDs of all valid movies/books/musicians from sub-KG by
matching their names with tail of triples (head, film.film.name, tail),
(head, book.book.title, tail) or (head, type.object.name, tail). Then, we
select all triples whose head entities match with the item IDs from
sub-KG. The detailed statistics of the three datasets are shown in
Table 1.

5.1.2 Evaluation Protocols. In this paper, we conduct experiments
in two recommendation tasks. For top-N recommendation task, we
adopt two widely-used evaluation protocols to evaluate the effec-
tiveness of our proposed method: Recall@N and NDCG@N, and
we set N={5, 10, 20}. For CTR prediction task, we use AUC for eval-
uation protocol. For each dataset, the ratio of training, validation,
and test set is 6 : 2 : 2. We report the average performance of five
runs.

5.1.3 Baselines. To illustrate the effectiveness of our model, we
choose one traditional CF model, three KG based models and three
GCN based models, as follows:

• MF [13] is the standardmatrix factorizationwhich uses inner
product to model user-item interactions.

• CKE [33] incorporates structural, textual, and visual knowl-
edge to enhance item embeddings. In this paper, we combine
CF with a structural knowledge module for original method
since the unstructured data is unavailable in our datasets.

4https://grouplens.org/datasets/hetrec-2011/
5https://searchengineland.com/library/bing/bing-satori

• RippleNet [21] models user representation as plenty of en-
tities related to user’s historical interacted items.

• KGCN [22] is a state-of-the-art KG-based method for rec-
ommendation, which effectively captures user-specific pref-
erences for items in the KG.

• PinSage [32] is designed to apply GraphSAGE on item-item
graph. In our work, we employ it on user-item bipartite
graph for generating item recommendation lists.

• NGCF [24] is a state-of-the-art GCN-based method, which
refines user and item representations via high-order connec-
tivity modeling.

• DisenGCN [15] is a state-of-the-art GCN-based method,
which utilizes neighborhood routing to learn fine-grained
latent factors behind the edges.

5.1.4 Experiments Setup. In our work, we use tanh as the acti-
vation function. Hyper-parameters setting on three datasets for
DCF are shown in Table 1. To fairly compare the performance of
all models, we train them by optimizing cross-entropy loss with
Adam optimizer and Xavier initializer [5]. We train all models for
30 epochs, and early stopping strategy is performed to prevent
overfitting. The embedding size, batch size and learning rate for
baselines on each dataset are the same as DCF, as shown in Table 1.
We apply grid search for hyper-parameters tuning: the learning
rate is tuned amongst {2 × 10−5, 5 × 10−5, 2 × 10−4, 5 × 10−4, 10−3},
the disagreement regularization weight λ1 and l2 normalization
weight λ2 are searched in {10−7, 10−6, 10−5, 2 × 10−5, 10−4, 10−3}.
For RippleNet, we set the number of hops and the memory size as
2 and 8, respectively. Other hyper-parameters are consistent with
those mentioned in the original paper or their source codes.

5.2 Performance Comparison (RQ 1)
From the results of top-N recommendation and CTR prediction in
Tables 2, 3 and 4, we have the following observations:

• DCF consistently yields the best performance on all datasets
for top-N recommendation. In particular, DCF improves over
the best baselines with regard to recall@20 by 6.8%, 19.57%
and 4.1% in MovieLens-20M, Book-Crossing and Last.FM,
respectively. Compared to state-of-the-art KG-based method
KGCN, DCF still achieves better performance. It exactly
shows that relying on external information is unable to char-
acterize implicit fine-grained preference because even KGs
that contain rich information about items can only represent
an item from a limited perspective. Compared with GCN-
based baselines, DCF still achieves significant improvement.
We argue that this is because the fine-grained implicit rela-
tions modeling helps DCF to better capture user preference.

• DCF achieves impressive improvement upon DisenGCN,
demonstrating that DCF is more effective to model implicit
factors in fine-grained level.

• CKE is inferior to RippleNet andKGCN, indicating the embedding-
based methods might not make full use of item knowledge
and loosely couple with CF framework. Moreover, KGCN
achieves the performance next to DCF for top-N recommen-
dation in Book-Crossing dataset. It indicates that KGCN
guarantees better performance even in sparse scenarios.
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Table 2: The results of Recall@N in top-N recommendation. Boldface denotes best baseline, and * denotes the significance
p-value < 0.01 compared with the best baseline.

Methods MovieLens-20M Book-Crossing Last.FM
Recall@5 Recall@10 Recall@20 Recall@5 Recall@10 Recall@20 Recall@5 Recall@10 Recall@20

MF 0.0879 0.1433 0.1843 0.0442 0.0568 0.0736 0.0718 0.1236 0.1766
CKE 0.0764 0.1303 0.1721 0.0452 0.0575 0.0733 0.0768 0.1346 0.2034
RippleNet 0.0878 0.1324 0.1798 0.0546 0.0711 0.0837 0.0732 0.1199 0.1501
KGCN 0.0901 0.1425 0.1995 0.0631 0.0792 0.0847 0.0735 0.1289 0.1826
PinSage 0.0893 0.1492 0.2124 0.0549 0.0751 0.0780 0.0816 0.1453 0.2113
NGCF 0.0842 0.1439 0.2149 0.0588 0.0734 0.0837 0.0896 0.1459 0.2142
DisenGCN 0.0832 0.1389 0.2116 0.0572 0.0704 0.0874 0.0893 0.1419 0.2114
DCF 0.0927∗ 0.1572∗ 0.2295∗ 0.0745∗ 0.0927∗ 0.1018∗ 0.0975∗ 0.1536∗ 0.2230∗

% improve. 2.89% 5.36% 6.79% 18.07% 17.05% 19.57% 8.81% 5.28% 4.11%

Table 3: The results of NDCG@N in top-N recommendation. Boldface denotes best baseline, and * denotes the significance
p-value < 0.01 compared with the best baseline.

Methods MovieLens-20M Book-Crossing Last.FM
NDCG@5 NDCG@10 NDCG@20 NDCG@5 NDCG@10 NDCG@20 NDCG@5 NDCG@10 NDCG@20

MF 0.0895 0.1179 0.1279 0.0375 0.0465 0.0579 0.0602 0.0763 0.0807
CKE 0.0812 0.1016 0.1195 0.0402 0.0447 0.0494 0.0612 0.0801 0.0977
RippleNet 0.0905 0.1115 0.1212 0.0478 0.0535 0.0578 0.0621 0.0798 0.0819
KGCN 0.0936 0.1126 0.1373 0.0584 0.0627 0.0654 0.0619 0.0832 0.1013
PinSage 0.0917 0.1310 0.1586 0.0516 0.0587 0.0599 0.0688 0.0951 0.1103
NGCF 0.0904 0.1249 0.1568 0.0535 0.0592 0.0616 0.0711 0.0991 0.1232
DisenGCN 0.0786 0.1096 0.1475 0.0453 0.0499 0.0642 0.0759 0.0947 0.1198
DCF 0.0992∗ 0.1341∗ 0.1690∗ 0.0682∗ 0.0749∗ 0.0790∗ 0.0789∗ 0.1028∗ 0.1289∗

% improve. 8.18% 2.37% 6.56% 16.78% 19.46% 20.80% 10.97% 3.73% 4.62%

Table 4: The results of AUC in CTR prediction.
MovieLens-20M Book-Crossing Last.FM

MF 0.961(-2.1%) 0.692(-6.7%) 0.809(-2.5%)
CKE 0.925(-6.1%) 0.678(-8.8%) 0.802(-3.4%)
RippleNet 0.972(-0.9%) 0.715(-3.2%) 0.787(-5.3%)
KGCN 0.978(-0.3%) 0.735(-0.4%) 0.798(-3.9%)
PinSage 0.980(-0.1%) 0.719(-2.6%) 0.808(-2.6%)
NGCF 0.979(-0.2%) 0.717(-2.9%) 0.817(-1.5%)
DisenGCN 0.980(-0.1%) 0.717(-2.9%) 0.816(-1.6%)
DCF 0.981 0.738 0.829

Table 5: Recall@20 results of different number of implicit
relations for three datasets.
K 1 2 3 4 5 6

Movie 0.1985 0.2063 0.2245 0.2295 0.2146 0.2132
Book 0.0896 0.1031 0.0977 0.1074 0.1024 0.1018
Music 0.201 0.2036 0.2098 0.2210 0.2079 0.2068

• PinSage and NGCF achieve satisfactory performance for two
recommendation scenarios, demonstrating the effectiveness
of GCN-based methods on capturing high-order connectivity
to enhance the embeddings of users and items. Moreover,
NGCF outperforms PinSage in most cases, which points the
usefulness of the explicitly preserving collaborative signals.

Table 6: Impact of high-order propagation. R is short for Re-
call, and NG is short for NDCG.

Movie Book Music
R@20 NG@20 R@20 NG@20 R@20 NG@20

DCF-1 0.2187 0.1644 0.1018 0.0790 0.2230 0.1289
DCF-2 0.2295 0.1690 0.0942 0.0701 0.2176 0.1185
DCF-3 0.2104 0.1602 0.0876 0.0679 0.1892 0.0965

5.3 Hyper-parameters Study (RQ 2)
5.3.1 Impact of sampling size of two types of relation neigh-
bors. The sampling number of explicit relation neighbors and im-
plicit relation neighbors should be different to verify the influence
of two factors separately. We vary the size of implicit relation
neighbors to investigate the efficacy of the usage of implicit re-
lationships between users and items by fixing the size of explicit
relation neighbors. Analogously, we can evaluate the efficacy of
the usage of explicit relations. n1 denotes sampling size of explicit
relation neighbors, and n2 denotes sampling size of implicit rela-
tion neighbors. Results in Figure 3 show that DCF achieves best
performance when n1 = 20 and n2 = 20 for Last.FM, n1 = 10 and
n2 = 20 for Book-Crossing. In addition, we find DCF achieves better
performance in MovieLens-20M when the neighbor sampling sizes
increase. However, we choose n1 = 10 and n2 = 20 for MovieLens-
20M for trade-off between performance and computational cost.

5.3.2 Impact of number of fine-grained implicit relations.
We vary K from 1 to 6 to investigate the influence of the num-
ber of implicit relations. From the results in Table 5, we find the
performance of DCF gets better when K increases. However, the
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Figure 3: Recall@20 results of different sizes of the set of
relation neighbors.

MovieLens-20M Book-Crossing Last.FM
0.00

0.05

0.10

0.15

0.20

R
e
ca

ll@
2

0

0.2106

0.0879

0.2153
0.2236

0.0984

0.2201
0.2123

0.0844

0.2148

0.2295

0.1018

0.223w/o IR

w/o DR

w/o ER

DCF

Figure 4: Performance comparison of three different vari-
ants of DCF.

performance of DCF tends to become saturated as K continues to
grow, possibly due to overfitting problem. We make assumption
that DCF achieves the optimal performance when the preset K is
closed to the number of implicit factors that actually affect user
decision-making. Results in Table 5 demonstrate that K = 4 is the
optimal value on three datasets.

5.3.3 Impact of high-order connectivitymodeling. We inves-
tigate the impact of high-order propagation via varyingmodel depth
L in {1, 2, 3}, getting corresponding variants of DCF: DCF-1, DCF-2
and DCF-3. From the experimental results in Table 6, we can find
the performance of DCF decays when the depth of the model is sat-
urated, demonstrating too deep of DCF may bring noise. Therefore,
we set L = 2 for MovieLens-20M and L = 1 for Book-Crossing and
Last.FM.

5.4 Ablation Study (RQ 3)
To verify the effectiveness of the specific designs in our model, we
do ablation study via generating three different variants of DCF. In
particular, we generate DCFw/o IR by setting the number of implicit
relations to 1 (i.e., K = 1) which denotes that we don’t model fine-
grained implicit relations between users and items. We disable
disagreement regularization, termed as DCFw/o DR . Moreover, we
disable the explicit relation modeling part and employee DGCN
to model fine-grained implicit relations, namely DCFw/o ER . From
the experimental results in Figure 4, we have following findings:

• From the comparison between DCFw/o IR and DCF, we can
find that fine-grained modeling of implicit factors is nec-
essary to better capture user preference. As illustrated in
Table 2, DCFw/o IR achieves massive improvement upon
KG based recommendation methods (e.g. CKE, RippleNet,
KGCN), which demonstrates the effectiveness of user-specific
relation aggregation of DCF in modeling explicit relations.

k1
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k4

(a) u14916

k1

k3

k4

(b) u5499

k2

k3

k4

(c) u13497

Figure 5: Interacted item embedding visualization using t-
SNE of three users on Book-Crossing dataset. Items that are
interacted by the user due to the same fine-grained implicit
factor ki tend to cluster together.
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Figure 6: Real example from Book-Crossing dataset. Left fig-
ure is the factor-level attention weight of interacted items
and recommended item, center figure reveals the relation-
ship from implicit perspective, and right figure indicates
their association from explicit perspective.

• From the comparison between DCFw/o DR and DCF, we can
see that the proposed disagreement regularization success-
fully drives the model to learn more distinct fine-grained
implicit relations, resulting in performance improvement of
DCF.

• Compared with DCFw/o ER , DCF achieves better perfor-
mance, demonstrating the effectiveness and necessity of our
method onmodeling explicit relations. In addition, DCFw/o ER
is superior to DisenGCN in modeling fine-grained implicit
factors behind interaction, as illustrated in Table 2 and Figure
4.

5.5 Case Study (RQ 4)
5.5.1 In-depth analyses of the learned embeddings. In order
to analyze the learned representations in depth, we randomly select
three users in Book-Crossing dataset and project the learned embed-
dings of interacted items into 2-D space with t-SNE algorithm [16].
From the distribution of items in Figure 5, we can observe that
items that are interacted by the user due to the same fine-grained
implicit factor tend to cluster with each other. To conclude, the vi-
sualization shows DCF can effectively distinguish the fine-grained
implicit factors behind the interactions between users and items,
leading to finer reflecting deep motivations behind user behaviors.

5.5.2 Analysis of user behaviors. We analyze the user behav-
iors through the visualization of some components in our model,
as illustrated in Figure 6. We randomly select a user u14916 in the
Book-Crossing dataset. The recommended book for this user is
Twilight Eyes From implicit factors, the user may be interested in
Twilight Eyes due to factor k3 and there exist two interacted items
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in the user’s historical records, which are The Penwyth Curse and
Somewhere in the Darkness. They are also interacted by user u14916
through the same factor. To this end, we can make an assumption
that the factor k3 in that case may be related with horror novel.
For explicit factors, the user pays the most attention to "genre"
(0.190) and "author" (0.141). Hence, from explicit perspective, the
explanation for the recommendation can be that its author (Dean
R. Koontz) and genre (fiction) are what the user prefers.

6 CONCLUSION
In this work, we take the user-item bipartite graph and knowledge
graph as a unified CRG and propose a generalized relation aggrega-
tor based method DCF to unveil the fine-grained factors behind the
interactions for enhancing users and items embeddings on CRG.
To capture implicit factors, we utilize factor-level attention and at-
tentive implicit relation aggregation to model collaborative signals
in fine-grained level. Then we apply disagreement regularization
to avoid the issue that the separated factors reflect similar motiva-
tions. To capture explicit factors, we devise a user-specific relation
aggregator to aggregate the most import entities. We stack multiple
layers to capture high-order connectivity to enhance users and
items representation. We conduct extensive experiments on three
datasets for two recommendation tasks, and results demonstrate
the effectiveness and interpretability of our method.

In future work, we want to extend DCF for enhancing user
preferences via leveraging social networks [27]. Another promising
direction of future work is to explore a more effective sampling
policy [26, 29] to replace uniformly sampling rule.
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