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ABSTRACT
Since the inception of Recommender Systems (RS), the accuracy of
the recommendations in terms of relevance has been the golden
criterion for evaluating the quality of RS algorithms. However, by
focusing on item relevance, one pays a significant price in terms
of other important metrics: users get stuck in a "filter bubble" and
their array of options is significantly reduced, hence degrading the
quality of the user experience and leading to churn. Recommenda-
tion, and in particular session-based/sequential recommendation,
is a complex task with multiple - and often conflicting objectives -
that existing state-of-the-art approaches fail to address.

In this work, we take on the aforementioned challenge and in-
troduce Scalarized Multi-Objective Reinforcement Learning (SMORL)
for the RS setting, a novel Reinforcement Learning (RL) framework
that can effectively address multi-objective recommendation tasks.
The proposed SMORL agent augments standard recommendation
models with additional RL layers that enforce it to simultaneously
satisfy three principal objectives: accuracy, diversity, and novelty
of recommendations. We integrate this framework with four state-
of-the-art session-based recommendation models and compare it
with a single-objective RL agent that only focuses on accuracy. Our
experimental results on two real-world datasets reveal a substantial
increase in aggregate diversity, a moderate increase in accuracy,
reduced repetitiveness of recommendations, and demonstrate the
importance of reinforcing diversity and novelty as complementary
objectives.

CCS CONCEPTS
• Information systems → Recommender systems; •Retrieval
models and ranking; • Diversity and novelty in information
retrieval;
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1 INTRODUCTION
Whether in the context of entertainment, social networking or e-
commerce, the sheer number of choices that modernWeb users face
nowadays can be overwhelming. Contrary to the common belief
that more options are always better, selections made from large
assortments can lead to a choice overload [17] and impair users’
capacity for rational decision making. Simply put, when presented
with large array situations (e.g., limitless products to purchase from
or media content to consume), users are at higher risk of feeling
like they made the wrong decision and experience regret, which
can degrade the quality of experience with an online service or
platform. The problem becomes further aggravated when one is
inclined to consider the costs and benefits of all alternative options.

Recommender Systems (RS) alleviate this paradox of choice [32]
by acting as second-order strategies [35] that facilitate access to rel-
evant information and improve the browsing experience [16, 43].
Hence, in settings where the abundance of options can result in
unsatisfying choices or, even worst, abandonment, the user experi-
ence is ultimately determined by the RS capacity to filter irrelevant
content and recommend only items regarded as desirable. So far, the
main focus of the research community in the area of RS has been
placed on designing algorithms that can identify and recommend
relevant content. However, while doing so, they tend to optimise
(for the most part) mainstream metrics such as accuracy, at the
expense of other content-derived qualitative aspects. In this work,
the term “accuracy” denotes the performance of the RS in terms of
ranking relevant items in the offline test set, and it should not be
mistaken for accuracy in classification tasks.

In recent years, diversity and novelty of recommendations have
been recognized as important factors for promoting user engage-
ment, since recommending a diverse set of relevant items is more
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likely to satisfy users’ variable needs. For example, Hu and Pu [15]
report a strong positive correlation between diversity of recommen-
dations and ease of use, perceived usefulness, and intentions to use
the system. Therefore, a RS that suggests strictly relevant items to
a user who just purchased an espresso machine will, most likely,
end up recommending more coffee machines, while the preferred
set of recommendations would include coffee mugs, cleaning equip-
ment, coffee beans, so to speak. In the former case, users will get to
interact only with a small subspace of the available item space [28]
and, according to the “law of diminishing marginal returns”, the
utility of the recommendations will eventually degrade as users are
exposed to similar content, over and over again.

Session-based recommendation has been introduced as an al-
ternative, industry-relevant approach to RS. In session-based rec-
ommendation, a sequential model (e.g., a RNN [14] or a trans-
former [19, 37]) is trained in a self-supervised fashion to predict
the next item in the sequence itself, instead of some “external” la-
bels [14, 19, 43]. This training process was inspired by language
modelling tasks where, given a word sequence input, the language
model predicts the most likely word to appear next [24]. However,
this training method can also produce sub-optimal recommenda-
tions, since the loss function is defined purely by the mismatch
between model predictions and the actual items in the sequence.
Models trained under such a loss function focus only on match-
ing the sequence of clicks a user may generate, while forfeiting
other desirable objectives. For example, a service provider may
want to promote recommendations that will converge to purchases,
increase user satisfaction, diversify user-item interactions and pro-
mote long-term engagement. Nevertheless, in order to optimize
an RS towards said objectives, one needs to capture them with a
differentiable function, which is not a trivial task. Therefore, the
use of multi-objective optimization (MOO) is heavily limited in
areas where important objectives can only be presented in a form
of non-differentiable functions/metrics.

Diversity and novelty of recommended item lists are correlated
with increased diversity of sales [9], and address the “winner-takes-
all” problem by recommending less popular items from the so-called
“long-tail’. An item from a diverse recommendation list ismore likely
to be novel, i.e., an item that the user would not normally interact
with. This is supported by prior work, which suggests that most
users appreciate novel and less popular recommendations [21, 44].
Recommendation models trained with simple supervised learning
may encounter difficulties in addressing the above recommendation
expectations and the multi-objective nature of many online tasks.

To address the current challenges, we expand on the idea of
utilising RL in the RS setting and introduce a Scalarized Multi-
Objective RL (SMORL) approach. SMORL uses a single RL agent to
simultaneously satisfy three, potentially conflicting, objectives: i)
promote clicks, ii) diversify the set of recommendations, and iii)
introduce novel items, while at the same time optimising for rele-
vance. The model focuses on the chosen rewards while maintaining
high relevance ranking performance. More specifically, given a
generative sequential or session-based recommendation model, the
(final) hidden state of the model can be seen as it’s output layer,
since it is multiplied with the last (dense softmax) layer to generate
the recommendations [14, 19, 43]. We augment these models with
multiple final output layers. The conventional self-supervised head,

is trained with the cross-entropy loss to perform ranking, while the
SMORL part is simultaneously trained to modify the rankings of
the self-supervised head. The RL heads can be seen as regularizers
that introduce more diverse and novel recommendations, while the
ranking-based supervised head can provide more robust learning
signals (including negative signals) for parameter updates. One of
the main advantages of using MORL instead of MOO in the context
of RS is the possibility of using non-differentiable functions for
reward system that the RL agent uses to regularize the base model.

Previous attempts of balancing accuracy with diversity and nov-
elty included re-ranking of the final set of recommendations or
training of multiple models and the use of genetic algorithms to ag-
gregate those models [31], whereas our approach relies on training
a single model and using the SMORL framework to balance the prin-
cipal recommendation objectives. We argue that this framework
can be easily extrapolated to other domains such as music, video,
and news recommendations (by using embedding systems [3, 23]),
where diversity and novelty are high-value metrics. In summary,
our work makes the following contributions:

• We devise a novel diversity reward that utilises the item
embedding space.

• We devise a novel metric for evaluation of RS that measures
repetitiveness of recommendations.

• To the best of our knowledge, we apply Multi-Objective
Reinforcement Learning (MORL) in the setting of RS for the
first time and explore some of the many possibilities and
future research directions that this approach offers.

• We introduce SMORL that drives the self-supervised RS to
produce more accurate, diverse and novel recommendations.
We integrate four state-of-the-art recommendation models
into the proposed framework.

• We conduct experiments on two real-world e-commerce
datasets and demonstrate less repetitive recommendations
sets, significant improvements in aggregate diversity met-
rics (up to 20%), all while maintaining, or even improving
accuracy for all four state-of-the-art models.

2 RELATEDWORK
Several deep learning-based approaches that model the user inter-
action sequences effectively have been proposed for RS. Hidasi et al.
[14] used gated recurrent units (GRU) [8] to model user sessions,
while Tang and Wang [36] and Yuan et al. [43] used convolutional
neural networks (CNN) to capture sequential signals. Kang and
McAuley [19] exploited the well-known Transformer [37] in the
field of sequential recommendation, with promising results. All of
these models can serve as the base model whose input is a sequence
of user-item interactions and the output is a latent representation
that describes the corresponding user state.

Several attempts to use RL for RS have also been made. In the
off-policy setting, Chen et al. [5] and Zhao et al. [45] proposed
the use of propensity scores to perform off-policy correction, but
with training difficulties due to high-variance. Model-based RL ap-
proaches [6, 34, 47] first build a model to simulate the environment,
in order to avoid any issues with off-policy training. However, these
two-stage approaches depend heavily on the accuracy of the simula-
tor. Xin et al. [42] introduced SQN and SAC, two self-supervised RL
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frameworks for RS that augment the recommendation model with
two output layers (heads). First head is based on the cross-entropy
supervised loss, while the other RL head is based on the Double
Q-learning [11]. Although SQN and SAC improve performance,
they only increase accuracy by promoting clicks and purchases that
a user might make. However, an accurate RS is not necessarily a
useful one: real value lies in suggesting items that users would likely
not discover for themselves, that is, in the novelty and diversity
of recommendations [12]. Improving accuracy typically decreases
diversity and novelty, which can occur when RL is deployed to reg-
ularize session-based RS (see discussion in Section 5). A decrease
of aggregate diversity can impact the user experience and satisfac-
tion with the RS [15]. Anderson et al. [1] also report that current
recommendations discourage diverse user-item interactions.

Diversifying recommendations and introducing novel recom-
mendations were recently recognized as important factors for im-
proving RS. Early efforts focused on post-processing methods that
aimed to balance accuracy and diversity [2, 29, 33]. In order to miti-
gate issues with significant cumulative loss on the ranking function,
personalized ranking methods were proposed [7]. Chen et al. [4]
tried to address the issues of post-processing methods that con-
sider only pairwise measures of diversity and ignore correlations
between items, by proposing the probabilistic model Determinan-
tal Point Process [22] that captures the correlation between items
using a kernel matrix. Once this matrix is learned, many sampling
techniques can generate a diverse set of items [4, 38, 40]. These
models achieve a trade-off between accuracy and diversity at best.
On the other hand, SMORL significantly increases diversity and
slightly improves the accuracy.

In the RL setting, Zheng et al. [46] focused on exploration-
exploitation strategies for promoting diversity, by randomly choos-
ing random item candidates in the neighborhood of the current
recommended item. Hansen et al. [10] proposed a RL sampling-
based ranker that produces a ranked list of diverse items. This
model is a simple ranker and the model itself doesn’t learn to pro-
duce diverse set of items, while the learning process utilizes the
REINFORCE algorithm [41] which is known to suffer from high-
variance. Finally, prior attempts to optimize multiple objectives in
the setting of RS relied on Pareto-Optimization using grid search
[31] or multi-gradient descent [25]. However, by definition, one
Pareto optimal solutions is not necessarily better than other Pareto
optimal solution with respect to all objectives.

3 MULTI-OBJECTIVE RL FOR RS
Let I denote the whole item set, then a user-item interaction
sequence can be represented as x1:𝑡 = {𝑥1, 𝑥2, ..., 𝑥𝑡−1, 𝑥𝑡 }, where
𝑥𝑖 ∈ I(0 < 𝑖 ≤ 𝑡) is the index of the interacted1 item at timestamp
𝑖 . The goal of next item recommendation is recommending the item
x𝑡+1 to users that will best suit their current interests, given the
sequence of previous interactions x1:𝑡 .

From the perspective of MORL, the next item recommendation
task can be formulated as a Multi-Objective Markov Decision Pro-
cess (MOMDP) [39], in which the recommendation agent interacts

1In a real world scenario there may be different kinds of interactions. For instance, in
e-commerce, the interactions can be clicks, purchases, basket additions, and so on. In
music recommendation, the interactions can be characterized by the play time of a
song, the number of times a song was listened, etc.

with the environments E (users) by sequentially recommending
items tomaximize the discounted cumulative rewards. TheMOMDP
can be defined by tuples of(S,A,P,R, 𝜌0, 𝛾) where:

• S : a continuous state space that describes the user state.
The state of the user at timestamp 𝑡 can be defined as s𝑡 =
𝐺 (x1:𝑡 ) ∈ S(𝑡 > 0), where 𝐺 is a sequential model that will
be discussed in Section 4.

• A : a discrete action space that contains candidate items. The
action𝑎 of the agent is to recommend the selected item. In the
offline RL setting, we either extract the action at timestamp
𝑡 from the user-item interaction, i.e., 𝑎𝑡 = 𝑥𝑡+1, or by setting
it to a top prediction obtained from the self-supervised layer.
The “goodness” of a state-action pair (s𝑡 , 𝑎𝑡 ) is described by
its multi-objective Q-value function Q(s𝑡 , 𝑎𝑡 ).

• P : S × A × S → R is the state transition probability
𝑝 (s𝑡+1 |s𝑡 , 𝑎𝑡 ), i.e., a probability of state transition from s𝑡 to
s𝑡+1 when agent takes action 𝑎𝑡 .

• R : S × A ↦→ R𝑚 is the vector-valued reward function2,
where r(s, 𝑎) denotes the immediate reward by taking action
𝑎 at state s.

• 𝜌0 is the initial state distribution with s0 ∼ 𝜌0.
• 𝛾 ∈ [0, 1] is the discount factor for future rewards. For 𝛾 = 0,
the agent only considers the immediate reward, while for
𝛾 = 1, all future rewards are regarded fully except the one of
the current action.

The goal of the MORL agent is to find a solution to a MOMDP in a
form of target policy 𝜋𝜃 (𝑎 |s) so that sampling trajectories according
to 𝜋𝜃 (𝑎 |s) would lead to the maximum expected cumulative reward:

max
𝜋𝜃
E𝜏∼𝜋𝜃

[
𝑓
(
R(𝜏)

) ]
, where R(𝜏) =

|𝜏 |∑︁
𝑡=0

𝛾𝑡 r(s𝑡 , 𝑎𝑡 )

where 𝑓 : R𝑚 ↦→ R is a scalarization function, while 𝜃 ∈ R𝑑 denotes
the policy parameters. The expectation is taken over trajectories
𝜏 = (s0, 𝑎0, s1, 𝑎1 ...), obtained by performing actions according to
the target policy: s0 ∼ 𝜌0, 𝑎𝑡 ∼ 𝜋𝜃 (·|s𝑡 ), s𝑡+1 ∼ P(·|s𝑡 , 𝑎𝑡 ).

A scalarization function 𝑓 maps the multi-objective Q-values
Q(s𝑡 , 𝑎𝑡 ) and a reward function r(s𝑡 , 𝑎𝑡 ) to a scalar value, i.e., the
user utility. In this paper, we focus on linear 𝑓 ; each objective 𝑖 is
given an importance, i.e. weight𝑤𝑖 , 𝑖 = 1, ...,𝑚 such that the scalar-
ization function becomes 𝑓w (x) = w⊤x, where w = [𝑤1, ..,𝑤𝑚].

4 MODEL AND TRAINING
We cast the task of next item recommendation as a (self-supervised)
multi-class classification problem and build a sequential model that
receives user-item interaction sequence x1:𝑡 = [𝑥1, 𝑥2, ..., 𝑥𝑡−1, 𝑥𝑡 ] as
an input and generates𝑛 classification logits y𝑡+1 = [𝑦1, 𝑦2, ..., 𝑦𝑛] ∈
R𝑛 ,where 𝑛 is the number of candidate items. We can then choose
the top-𝑘 items from𝑦𝑡+1 as our recommendation list for timestamp
𝑡 + 1. Each candidate item corresponds to a class.

Typically one can use a generative sequence model 𝐺 (·) to map
the input sequence into a hidden state s𝑡 = 𝐺 (x1:𝑡 ). This serves as
a general encoder function. Based on the obtained hidden state, we
can utilize a simple decoder to map the hidden state to the classifi-
cation logits as 𝑦𝑡+1 = 𝑑 (s𝑡 ). One can define the decoder function

2Each component corresponds to one objective.
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Figure 1: The SMORL for Recommender Systems (SMORL4RS) training routine for sequential or session-based RS. Generative
model G maps user-item interaction sequence x1:𝑡 to the latent state s𝑡 . With the use of fully-connected layers, s𝑡 is mapped
to logits y𝑡+1 and to 1-dimensional Q-values: 𝑄acc, 𝑄div, and 𝑄nov. Diversity and novelty rewards are calculated using the top
prediction obtained by the logits. The vector valued Q-value function is set to: Q =

[
𝑄acc, 𝑄div, 𝑄nov

]
. SDQL loss is obtained by

the scalarization function and SDQL algorithm, and used for training the base model along with the cross-entropy loss.

𝑑 as a simple fully connected layer or the inner product with can-
didate item embeddings [14, 19, 43]. In this work, we make use of
the fully connected layer. Finally, we train our recommendation
model by optimizing the cross-entropy loss 𝐿𝑠 based on the logits
𝑦𝑡+1. Optimization of the cross-entropy loss will push the positive
logits to high values, while the items that user did not interact with
will be “penalised”, which will result in a strong negative learning
signal. This negative signal is essential for learning in the base
model, since the SMORL head provides strong gradients only for
positive actions, i.e., top-1 items. Furthermore, due to the fact that
the sequential recommendation model 𝐺 has already encoded the
input sequence into a latent representation s𝑡 , we directly use s𝑡
as the current state for the RL head without the need to introduce
a separate RL model. We stack additional fully connected layers to
calculate one-dimensional Q-values on top of 𝐺 :

𝑄𝑧 (s𝑡 , 𝑎𝑡 ) = 𝛿 (s𝑡H𝑧 + 𝑏𝑧) = 𝛿 (𝐺 (x1:𝑡 )H𝑧 + 𝑏𝑧)

where 𝑧 ∈ {acc, div, nov}, 𝛿 denotes the activation function, while
H𝑧 and 𝑏𝑧 are learnable parameters of the Q-learning output layer.
The SMORL part then stacks computed accuracy, diversity, and
novelty Q-values into a vector-valued Q-value function:

Q(s𝑡 , 𝑎𝑡 ) =
[
𝑄acc (s𝑡 , 𝑎𝑡 ), 𝑄div (s𝑡 , 𝑎𝑡 ), 𝑄nov (s𝑡 , 𝑎𝑡 )

]
(1)

In order to learn vector-valued Q-functions and tackle MORL
tasks, Scalarized Deep Q-learning (SDQL) [27] extends the popular
DQN algorithm [26], by introducing a scalarization function 𝑓 . At
every time step 𝑡 , Q-network is optimized on the loss 𝐿SDQL com-
puted on a mini-batch of experience tuples (s𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) obtained
from experience buffer 𝐷 :

𝐿SDQL = (𝑓 (ySDQL𝑡 (s𝑡 , 𝑎𝑡 ) − 𝛾Q(s𝑡+1, 𝑎𝑡 )))2

= (w⊤ (ySDQL𝑡 (s𝑡 , 𝑎𝑡 ) − 𝛾Q(s𝑡+1, 𝑎𝑡 )))2
(2)

where ySDQL𝑡 (s𝑡 , 𝑎𝑡 ) = r𝑡 + 𝛾Q′(s𝑡+1, argmax𝑎′ [w⊤Q′(s𝑡+1, 𝑎′)]),
andQ′ being the target network. Training towards a fixed target net-
work prevents approximation errors from propagating too quickly
from state to state, and sampling experiences to train on (experi-
ence replay) increases sample efficiency and reduces correlation
between training samples.

When generating recommendations, we still return the top-𝑘
items from the supervised head. The SMORL head acts as a reg-
ularizer of the base recommendation model 𝐺 that fine-tunes it
by assessing the quality of recommended top item, according to
the predefined reward setting and scalarization function 𝑓 , i.e.,
importance of objectives.

4.1 Reinforcing Accuracy
For the base model𝐺 to learn to provide more relevant recommen-
dations, we expand on [42] and define accuracy reward as

𝑟acc (s𝑡 , 𝑎𝑡 ) = 𝑟acc (𝑎𝑡 ) = 1, 𝑎𝑡 is a clicked item (3)

From the definition of the reward, the model is rewarded when
it matches the next clicked item in the sequence. Xin et. al. [42]
suggested using the reward for both clicks and purchases. However,
in this work, we introduce a method that can be easily extrapolated
from e-commerce to other relevant areas of RS. We note that, by
reinforcing the relevance of recommended items, one can signifi-
cantly hinder the user’s ability to explore the platform due to the
similarity of the recommendations to the user’s recent interests. We
explore this claim in Section 5. Therefore, it is crucial for a model
to also learn how to recommend diverse sets of items, as well as
items that are more probable to never be discovered by the user.

4.2 Reinforcing Diversity
For the SMORL head to promote diverse sets of recommendations,
we first train a GRU4Rec model [14], and save the embedding layer
Ediv. We then freeze the weights of Ediv to stop further updates of
the parameters. We define the reward 𝑟div as

𝑟div = 𝑟div (s𝑡 , 𝑝𝑡 ) = 1 − cos(𝑙𝑡 , 𝑝𝑡 ) = 1 −
e⊤
𝑙𝑡
e𝑝𝑡

∥e𝑙𝑡 ∥∥e𝑝𝑡 ∥
(4)

where 𝑙𝑡 is the last clicked item in the session, 𝑝𝑡 is a top prediction
obtained from self-supervised layer, and e𝑥 is the embedding of the
item 𝑥 , obtained from Ediv. We do not use the embedding of a model
that is currently trained for calculation 𝑟div. It would be unstable
at the beginning of the training process, which would produce
unreliable diversity rewards. This reward reinforces diversity across
a session of recommendations rather than just over a single slate.
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Algorithm 1: Training Procedure of SMORL
Input :user-item interaction sequence set X,

recommendation model 𝐺 ,
SMORL head Q , supervised head S,
predefined parameters 𝛼 and w

Output :all parameters in the learning space Θ
1 Initialize all trainable parameters
2 Create 𝐺 ′, Q′, as copies of 𝐺 and Q, respectively
3 repeat
4 Draw a mini-batch of (x1:𝑡 , 𝑎𝑡 ) from X
5 s𝑡 = 𝐺 (x1:𝑡 ), s′𝑡 = 𝐺 ′(x1:𝑡 )
6 s𝑡+1 = 𝐺 (x2:𝑡+1), s′𝑡+1 = 𝐺

′(x2:𝑡+1)
7 Generate random variable 𝑧 ∈ (0, 1) uniformly
8 if 𝑧 < 0.5 then
9 𝑎∗ = argmax𝑎 [Q(s𝑡+1, 𝑎) ·w]

10 pred = argmax S(s𝑡 )
11 Set reward r𝑡 = stack(𝑟acc, 𝑟div, 𝑟nov)
12 𝐿SDQL = w⊤ (r𝑡 + 𝛾Q′(s′

𝑡+1, 𝑎
∗) − Q(s𝑡 , 𝑎𝑡 ))2

13 Calculate 𝐿𝑠
14 𝐿SMORL = 𝐿𝑠 + 𝛼𝐿SDQL
15 Perform updates by ∇Θ𝐿SMORL
16 else
17 𝑎∗ = argmax𝑎 [Q′(s′

𝑡+1, 𝑎) ·w]
18 pred = argmax S(s𝑡 )
19 Set reward r𝑡 = stack(𝑟acc, 𝑟div, 𝑟nov)
20 𝐿SDQL = (w⊤ (r𝑡 + 𝛾Q(s𝑡+1, 𝑎∗) − Q′(s′𝑡 , 𝑎𝑡 ))2
21 Calculate 𝐿𝑠
22 𝐿SMORL = 𝐿𝑠 + 𝛼𝐿SDQL
23 Perform updates by ∇Θ𝐿SMORL
24 end
25 until converge;
26 Return all parameters in Θ

Basing the diversity reward system on top prediction 𝑝𝑡 and top-
𝑘 recommendations instead of only the last clicked item 𝑙𝑡 was
considered, but we observed no improvement in performance.

4.3 Reinforcing Novelty
Given an item, a user may have previously seen it in another set of
recommendations but chose not to click it, or already encountered
it on some other platform. Therefore, in a real-world use case,
it is impossible to track the items that a user may have already
seen, and to suggest items that are certain to be novel. To address
this issue and introduce novelty and serendipity into the set of
recommendations, we take a probabilistic approach. Less popular
items are more likely to be novel and lead to a more balanced
distribution of item popularity. We use binarized item frequency as
a novelty reward for our MORL head, which we define as follows:

𝑟nov = 𝑟nov (s𝑡 , 𝑝𝑡 ) =
{
0.0 𝑝𝑡 in top 𝑥% of most popular items
1.0 otherwise

where 𝑝𝑡 is the top predicted item obtained from the self-supervised
layer. The choice of 𝑥 is based on the empirical distribution of the

item popularity inferred from the training set, i.e., we set it to the
approximate percentile where the long tail starts. Both datasets
used in this work have a similar distribution, so we set 𝑥 B 10.
As can be seen, accuracy reward depends on the next item in the
session, while diversity and novelty rewards depends on the top
prediction from self-supervised layer.

4.4 Scalarized Multi-Objective RL for RS
Recommendation is by nature a multi-objective problem and, as
such, stock self-supervised learning, or even single-objective RL
methods, cannot satisfy all desirable (or necessary) goals. We inte-
grate the three proposed objectives into a single SMORL method
that at each timestamp finds an optimal action that takes into con-
sideration all objectives according to a predefined user utility func-
tion, or in this case, according to the configuration ofw from Eq.(2).
SMORL is highly customizable and adaptable to a specific provider’s
goals - one can define different reward systems that can result in
a RS that provides more relevant, novel, diverse, unexpected, or
serendipitous recommendations. The final loss that we optimize is:

𝐿𝑆𝑀𝑂𝑅𝐿 = 𝐿𝑠 + 𝛼𝐿SDQL (5)

where 𝐿𝑠 is a cross-entropy loss, and 𝛼 is a hyperparameter that
enables us to control the influence of SMORL part. In order to
enhance the learning stability, we alternately train two copies of
learnable parameters. Algorithm 1 describes the training procedure
of SMORL. It should be noted that after the training is finished,
only the self-supervised part of the base model is used to produce
recommendations, while the effects with respect to different metrics
are observed from the regularization by the SMORL part.

This training framework can be integrated in existing recom-
mendation models, provided they follow the general architecture
discussed earlier. This is the case for most session-based or sequen-
tial recommendation models introduced over the last years. In this
work, we use the cross-entropy loss for the self-supervised part but
other models can incorporate different loss functions [13, 30].

In addition, SMORL is a highly modular framework, where one
can re-weight and “deactivate” specific RL objectives, or add more
of them with the help of a carefully designed reward schema. Ulti-
mately, this mechanism allows the RS to focus on providers’ specific
short-term and long-term goals. However, our experimental results
show that models regularized by all three RL objectives perform
the best in most cases, with respect to all quality metrics.

5 EXPERIMENTS
We report the results of our experiments3 on two real-world se-
quential e-commerce datasets. For all base models, we used the
self-supervised head to generate recommendations. We address the
following research questions:

RQ1: When integrated, does the proposed method increase the
performance of the base models?

RQ2: Can we control the balance between accuracy, diversity
and novelty?

RQ3: Can we increase the influence of SMORL part by adjusting
the intensity of its gradient?

3The implementation can be found at https://drive.google.com/file/d/
1lVeKlajOkZ4n9Rl2VmJvYR9i1aXWkR2j/view?usp=sharing

https://drive.google.com/file/d/1lVeKlajOkZ4n9Rl2VmJvYR9i1aXWkR2j/view?usp=sharing
https://drive.google.com/file/d/1lVeKlajOkZ4n9Rl2VmJvYR9i1aXWkR2j/view?usp=sharing
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5.1 Experimental Settings
5.1.1 Datasets: RC154 and RetailRocket5, Table 1.

RC15. This dataset is based on the RecSys Challange 2015. The
dataset is session-based and each session contains a sequence of
clicks and purchases6. We discard sessions whose length is smaller
than 3 and then sample a subset of 200K sessions.

RetailRocket. This dataset is collected from a real-world e-
commerce website. It contains session events of viewing and adding
to cart. To keep in line with the RC15 dataset, we treat views as
clicks. We remove the items which are interacted less than three
times (3), and the sequences whose length is smaller than three (3).

5.1.2 Quality of Recommendation Metrics.
Accuracy metrics. Relevance of the recommended item set is

usually measured with two metrics: hit ration (HR) and normalized
discounted cumulative gain (NDCG). HR@𝑘 is a recall-based metric,
measuring whether the ground-truth item is in the top-𝑘 positions
of the recommendation list. We define HR for clicks as:

HR(click) =
#hits among clicks

#clicks
On the other hand, NDCG is a rank sensitive metric that assigns
higher scores to top positions in the recommendation list [18]

Diversity & Novelty metrics. Diversity in RS can be viewed
at either individual or aggregate level. For example, if the RS was
to provide the same set of ten dissimilar items to all users, the rec-
ommendation list for each user would be diverse, i.e., it would have
high individual diversity. However, the system can only recommend
ten items out of the entire item pool and, thus, the aggregate diver-
sity would be negligible. Therefore, in our experiments, we measure
aggregate diversity using Coverage@𝑘 (CV@𝑘), 𝑘 ∈ {1, 5, 10, 20}.
More specifically, wemeasure CV@𝑘 on two sets: set of all items and
a set of less popular items. Coverage can be computed as percentage
of all items (less popular items) covered by all top-𝑘 recommenda-
tions of the validation or test sequences.

Repetitiveness of Recommendations. We introduce Repet-
itiveness (R), a novel metric for evaluating the usefulness of rec-
ommendations. We consider this metric a good proxy as to how
easily a RS can create a filter bubble, as it measures the per session
average of repetitions in the top-𝑘 positions of recommendations
lists. We measure R@𝑘 , 𝑘 ∈ {5, 10, 20} and define it as:

𝑅@𝐾 =
1
𝑁

𝑁∑︁
𝑖=1

#repetitions in top-𝑘 items of session 𝑖 (6)

where 𝑁 is the total number of sessions in test (or validation) set.

5.1.3 Evaluation Protocols. We use 5-fold cross-validation for our
performance evaluation, with a ratio of 8:1:1 for training, validation,
and testing. We report average performance across all folds.

5.1.4 Baselines. We integrated SMORL in four state-of-the-art
(generative) sequential recommendation models:

• GRU4Rec [14]: This method uses a GRU to model the input
sequences. The final hidden state of the GRU4Rec is treated
as the latent representation for the input sequence.

4https://recsys.acm.org/recsys15/challenge/
5https://www.kaggle.com/retailrocket/ecommerce-dataset
6In this work, we only consider clicks.

Table 1: Dataset statistics.

Dataset RC15 RetailRocket
#sequences 200,000 195,523
#items 26,702 70,852
#clicks 1,110,965 1,176,680
#purchase 43,946 57,269

• Caser [36]: This recently introduced CNN-based method cap-
tures sequential signals by applying convolution operations
on the embedding matrix of previous items.

• NextItNet [43]: This method enhances Caser by using dilated
CNN to enlarge the receptive field and residual connection
to increase the network depth.

• SASRec [19]: This baseline is motivated from self-attention
and uses the Transformer [37] architecture to encode se-
quences of user-item interactions. The output of the Trans-
former encoder is treated as the latent representation.

5.1.5 Parameter settings. For both datasets the input sequences
comprise of the last 10 items before the target timestamp. If the
sequence length is less than 10, we complement it with a padding
item. We train all models with the Adam optimizer [20]. The mini-
batch size is set as 256. The learning rate is set as 0.01 for RC15 and
0.005 for RetailRocket. We evaluate on the validation set every 5, 000
batches of updates on RC15, and every 10, 000 batches of updates on
RetailRocket. To ensure a fair comparison, the item embedding size
is set as 64 for all models. For the GRU4Rec model, the size of the
hidden state is set as 64. For Caser, we use one vertical convolution
filter and 16 horizontal filters, whose heights are set from {2, 3, 4}.
The drop-out ratio is set as 0.1. For NextItNet, we use the same
parameters reported by authors. For SASRec, the number of heads
in self-attention is set as 1, according to its original paper [19]. We
set the discount factor 𝛾 to 0.5, as recommended by Xin et al. [42].

5.2 Performance Comparison (RQ1)
For both datasets, the SQN method [42] outperforms the baselines
with respect to recommending relevant items to the users. However,
by increasing the accuracy of the baselinemodel, it causes it to “drift”
from diversity and novelty. This results in a substantial decrease
(up to 20%) of coverage metrics for the baseline model, both on all
and less popular items. Together with this fact, increased repeti-
tiveness of recommendations suggests that reinforcing accuracy
alone may hinder significantly the perceived quality of experience.
Furthermore, it is evident that one should simultaneously optimize
the model towards diversity and novelty to achieve a balance be-
tween opposing metrics. In Table 2 and Table 3, we see that by
using the SMORL method we not only obtain a balance between
accuracy, diversity and novelty, but we consistently outperform the
corresponding baselines across all metrics and, to some extent, we
also improve their accuracy power. The increase in diversity and
novelty is up to 20% relative to the baseline model, and up to 40%
relative to the SQN model. Increases in the accuracy of the baseline
models can be attributed to most users having diverse interests that
cannot be satisfied by the recommendations produced by an RS [1].
Figure 2 displays the difference in cumulative diversity and novelty
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Table 2: Recommendation performance on RC15 dataset. NG is NDCG. CV is Coverage. Boldface denotes highest score.

Models accuracy diversity novelty repetitiveness

HR@10 NG@10 HR@20 NG@20 CV@1 CV@5 CV@10 CV@20 CV@1 CV@5 CV@10 CV@20 R@5 R@10 R@20
GRU 0.3793 0.2279 0.4581 0.2478 0.2481 0.4330 0.5188 0.5942 0.1777 0.3707 0.4654 0.5492 12.11 25.63 53.24
GRU-SQN 0.3946 0.2394 0.4741 0.2587 0.2406 0.4025 0.4710 0.5364 0.1656 0.3363 0.4122 0.4849 12.20 25.81 53.47
GRU-SMORL 0.4007 0.2433 0.4793 0.2632 0.2825 0.4758 0.5577 0.6334 0.2086 0.4176 0.5086 0.5927 11.29 23.81 48.88
Caser 0.3593 0.2177 0.4371 0.2372 0.2631 0.4349 0.5019 0.5608 0.1912 0.3724 0.4466 0.5120 14.38 29.65 60.73
Caser-SQN 0.3668 0.2223 0.4448 0.2420 0.2154 0.3525 0.4057 0.4557 0.1411 0.2810 0.2154 0.3953 14.45 29.79 60.82
Caser-SMORL 0.3664 0.2224 0.4425 0.2417 0.3174 0.5157 0.5944 0.6685 0.2476 0.4621 0.5495 0.6316 13.77 28.56 58.52
NtItNet 0.3885 0.2332 0.4684 0.2535 0.2950 0.4914 0.5705 0.6427 0.2313 0.4354 0.5228 0.6030 10.03 22.02 46.84
NtItNet-SQN 0.4083 0.2492 0.4878 0.2693 0.2737 0.4572 0.5183 0.5715 0.2082 0.3975 0.4649 0.5239 10.19 22.32 47.26
NtItNet-SMORL 0.4116 0.2505 0.4898 0.2703 0.3385 0.5639 0.6518 0.7283 0.2720 0.5156 0.6131 0.6981 9.97 21.73 45.49
SASRec 0.4257 0.2599 0.5053 0.2801 0.2971 0.5208 0.6046 0.6792 0.2298 0.4679 0.5607 0.6436 10.62 23.24 49.28
SASRec-SQN 0.4288 0.2630 0.5073 0.2829 0.2701 0.4527 0.5194 0.5755 0.2018 0.3922 0.4660 0.5283 10.94 23.85 50.79
SASRec-SMORL 0.4315 0.2651 0.5104 0.2851 0.3380 0.5755 0.6508 0.7158 0.2698 0.5285 0.6120 0.6842 10.38 22.79 48.48

Table 3: Recommendation performance on RetailRocket dataset. NG is NDCG. CV is Coverage. Boldface denotes highest score.

Models accuracy diversity novelty repetitiveness

HR@10 NG@10 HR@20 NG@20 CV@1 CV@5 CV@10 CV@20 CV@1 CV@5 CV@10 CV@20 R@5 R@10 R@20
GRU 0.2673 0.1878 0.3082 0.1981 0.2439 0.4695 0.5699 0.6632 0.1837 0.4139 0.5238 0.6267 14.25 29.44 60.59
GRU-SQN 0.2967 0.2094 0.3406 0.2205 0.2180 0.4114 0.4975 0.5763 0.1526 0.3489 0.4430 0.5299 14.62 30.19 62.22
GRU-SMORL 0.3060 0.2103 0.3535 0.2224 0.2796 0.5369 0.6419 0.7353 0.2154 0.4871 0.6029 0.7064 13.53 28.02 57.89
Caser 0.2302 0.1675 0.2628 0.1758 0.2327 0.4379 0.5133 0.5718 0.1643 0.3773 0.4605 0.5252 16.16 33.24 68.39
Caser-SQN 0.2454 0.1778 0.2803 0.1867 0.2088 0.3880 0.4511 0.5021 0.1387 0.3219 0.3914 0.4479 16.88 34.50 70.58
Caser-SMORL 0.2657 0.1898 0.3052 0.1998 0.2855 0.5411 0.6324 0.7138 0.2224 0.4917 0.5925 0.6827 15.90 32.47 66.76
NtItNet 0.3007 0.2060 0.3506 0.2186 0.2867 0.5113 0.6033 0.6837 0.2305 0.4595 0.5605 0.6495 12.25 25.76 54.00
NtItNet-SQN 0.3129 0.2150 0.3586 0.2266 0.2802 0.5255 0.6077 0.6750 0.2184 0.4747 0.5651 0.6395 12.27 25.93 54.47
NtItNet-SMORL 0.3183 0.2222 0.3659 0.2342 0.3429 0.6335 0.7351 0.8129 0.2800 0.5938 0.7062 0.7924 10.92 22.89 47.73
SASRec 0.3085 0.2107 0.3572 0.2227 0.2767 0.5305 0.6300 0.7149 0.2171 0.4806 0.5899 0.6838 15.67 32.27 66.07
SASRec-SQN 0.3302 0.2279 0.3803 0.2406 0.2393 0.4617 0.5490 0.6254 0.1753 0.4040 0.5001 0.5847 15.60 32.20 66.10
SASRec-SMORL 0.3521 0.2477 0.4028 0.2605 0.3037 0.5724 0.6672 0.7476 0.2366 0.5261 0.6311 0.7202 12.58 26.69 56.14
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Figure 2: Comparison of cumulative rewards on RC15 dataset with base models regularized by SMORL and SQN frameworks.

rewards obtained on the RC15 test set. When a base model is trained
with the SMORL framework, we note a significant increase in the
cumulative diversity and novelty rewards. Also, the results in Tables
2 and 3 suggest that reinforcing diversity and novelty introduces a
notable improvement in these metrics, which are highly correlated
with perceived quality of experience and engagement.

5.3 Reinforcing a Subset of Objectives (RQ2)
One of the advantages of using SMORL is its objective-balancing
capability, which works by re-weighting the objectives using dif-
ferent configurations of w’s in Eq.(2). In our setting, the first entry

of w corresponds to the strength of accuracy objective, the sec-
ond to diversity, and the third to novelty objective. We conduct
experiments with the following configurations of the parameter w:

w ∈ {(0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 1, 0), (1, 0, 1)} (7)

Here, we aim to demonstrate the difference in performance when
reinforcing a subset of three important objectives.We do not include
w = (1, 0, 0) in this analysis, since SMORL becomes equivalent to
SQN method from [42] and our results show exactly the same
behaviour across all models.

The objectives that we address in this work have a complex re-
lationship. For example, relevance and diversity at the beginning
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Figure 3: Performance comparison when reinforcing a subset of objectives (achieved by using different configurations of w
from Eq.(7)). Red lines denote relevant metrics of the stock NextItNet model - not trained using the SMORL4RS framework.
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Figure 4: NextItNet with different intensity of SMORL gradi-
ent on the RC15 (4a) and RetailRocket (4b) datasets

of the training process are correlated, i.e., more diverse recom-
mendations produce more relevant recommendations, while their
correlation becomes negative as the training progresses. Diversity
and novelty are intertwined objectives, e.g., a diverse set of rec-
ommended items is more likely to contain novel items. On the
other hand, the popularity of items follows a power distribution
and, therefore, less popular items make up to 90% of the dataset,
which means that items likely to be novel are inherently diverse.
Given that the proposed method is not a pure MORL model, but
rather a regularizer that forces the base model to capture different
(and often competing) objectives, the intricacies of optimizing and
balancing multiple objectives pose a significant research challenge.
In this section, our goal is to demonstrate that we can control how
much influence each objective has, and not how to find an ideal
balance. With the ability of control, many engineering possibilities
arise, such as deploying multiple SMORL4RS agents and deciding
in an online fashion if a user should receive recommendations from
an agent that is optimized towards novelty, diversity, or accuracy.

Figure 3 shows the comparison of NextItNet-SMORL model reg-
ularized by the SMORL agent that uses mentioned weight configu-
rations w on RetailRocket dataset, while similar behaviour can be
observed for the RC15 dataset and other models. More specifically,
Figure 3a indicates that if we regularize the model only towards
novelty, we will sacrifice its ability to recommend relevant items.
This phenomenon is also present if we only reinforce towards di-
versity, but the drop in NDCG@20 metric is not as notable. On the
other hand, if we optimize jointly towards diversity and novelty, we
do not observe a drop in the accuracy of the base model. Addition-
ally, if we include the accuracy objective to any of the two other,
we observe an increase in the relevant metric. From Figures 3b
and 3c, we note that including the accuracy objective comes at the
cost of diversity and novelty, while combined optimization towards
diversity and novelty produce the best results with respect to these
metrics. Similarly, by including the accuracy objective, we increase
the repetitiveness compared to the NextItNet-SMORL model that
optimizes towards a combination of diversity and novelty.

5.4 Gradient Intensity Investigation (RQ3)
Across all base models and both datasets, the SDQL loss is domi-
nated by self-supervised loss, which suggests that the optimization
of parameter 𝛼 from Eq.(5) might improve the effect of SMORL
part on the base model. Figure 4 shows the behaviour of NextItNet-
SMORL model with respect to NDCG@20 and CV@20 metrics on
both datasets when we change the intensity of SDQL gradient. As
expected, when multiplying SDQL with 𝛼 < 1, the effects are de-
creased and we do not improve dramatically compared to the base
model. Increase in both metrics can be seen for 𝛼 ∈ {1, 2, 3, 5, 10},
with the best balance obtained for 𝛼 = 5. For higher values of 𝛼 ,
we observe a notable drop in quality due to the loss of gradient
signal obtained from the self-supervised loss, which indicates that
it is necessary to have a self-supervised part to learn basic ranking.
Similar analysis can be made for RC15 dataset.

The optimal value of the 𝛼 parameter is equal to 1 for most cases
- SASRec on RC15 dataset, GRU4Rec on RetailRocket, and Caser on
the RetailRocket dataset. However, for GRU4Rec and Caser on RC15,
the optimal value is equal to 0.75, for SASRec and NextItNet on
RC15 to 3, while for SASRec on RetailRocket is equal to 10. Hence
for real-world use-cases, when datasets usually contain millions of
items, higher values of 𝛼 might be optimal. More complex models,
such as NextItNet and SASRec require higher value of 𝛼 .

6 CONCLUSIONS & FUTUREWORK
We first formalized the next item recommendation task and pre-
sented it as a Multi-Objective MDP task. The SMORL method acts
as a regularizer for introducing desirable properties into the recom-
mendation model, specifically to achieve a balance between rele-
vance, diversity and novelty of recommendations. We integrated
SMORL with four state-of-the-art recommendation models and
conducted experiments on two real-world e-commerce datasets.
Our experimental findings demonstrate that the joint optimization
of three conflicting objectives is essential for improving metrics
that are strongly correlated with user satisfaction, while also pre-
serving content relevance. Future work brings vast possibilities for
exploring the use of SMORL paradigm in the setting of RS, and
it will include further experiments with different objectives and
application of SMORL in different areas, such as music platforms.
Also, the joint optimization of supervised and SDQL loss is a re-
search problem on its own. Finally, we plan on exploring the use of
non-linear and personalized scalarization functions.
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