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Abstract—Learning effective user representations from sequen-
tial user-item interactions is a fundamental problem for recom-
mender systems (RS). Recently, several unsupervised methods
focusing on user representations pre-training have been explored.
In general, these methods apply similar learning paradigms by
first corrupting the behavior sequence, and then restoring the
original input with some item-level prediction loss functions.
Despite its effectiveness, we argue that there exist important
gaps between such item-level optimization objective and user-level
representations, and as a result, the learned user representations
may only lead to sub-optimal generalization performance. In this
paper, we propose a novel self-supervised pre-training frame-
work, called CLUE, which stands for employing Contrastive
Learning for modeling sequence-level User rEpresentation. The
core idea of CLUE is to regard each user behavior sequence as
a whole and then construct the self-supervision signals by trans-
forming the original user behaviors by data augmentations (DA).
Specifically, we employ two Siamese (weight-sharing) networks to
learn the user-oriented representations, where the optimization
goal is to maximize the similarity of learned representations of
the same user by these two encoders. More importantly, we
perform careful investigation of the impacts of view generating
strategies for user behavior inputs from a more comprehensive
perspective, including processing sequential behaviors by explicit
DA strategies and employing dropout as implicit DA. To verify
the effectiveness of CLUE, we perform extensive experiments on
several user-related tasks with different scales and characteristics.
Our experimental results show that the user representations
learned by CLUE surpass existing item-level baselines under
several evaluation protocols.

Index Terms—Recommender systems; User representation;
Contrastive learning; Sequential behaviors

I. INTRODUCTION

With the rapid growth of the Internet, online information
grows explosively. When making decisions in daily life, people
are often exposed to huge amounts of information or data,
the problem is often referred to as Information Overload.
Fortunately, recommender systems (RS), as an important infor-
mation filtering technique, have been extensively studied in the
past two decades, which help users find personalized items that
fit their needs [1], [2]. The basic idea of RS is built following
the simple assumption that if users rate items similarly in the
past, they are likely to rate other items similarly in the future.

To capture such similarity between users, one common
paradigm of RS is to project users as embedded feature
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vectors, a.k.a., representations. Actually, learning accurate
representations [3] has become a fundamental problem in per-
sonalized RS. Earlier works like matrix factorization (MF) [4]
parameterize the IDs of a user and item by formulating
item recommendation task as a matrix completion problem.
Recently, significant progress has been made in user represen-
tations learning with deep neural network techniques [5]. For
example, [6] proposed to leverage Auto-Encoder framework
to learn latent representations by first corrupting user-item
records and then reconstructing the full input. Meanwhile,
some lines of research employ DNNs to learn representations
of users and items based on the two-tower structure [3],
[7]. Particularly, a series of deep sequential recommender
models [8]–[10] have been applied to encode user interaction
sequences, which yield improved results than the common
DNN-based methods. Nevertheless, these standard models
usually fail to learn optimal representations when encountering
the data sparsity problems (e.g., the cold-start issues) with
limited context information.

Inspired by the breakthrough performance of pre-training in
NLP [11], [12] and CV [13]–[15], several recent works [16]
have explored such techniques for recommendation tasks by
first pre-training generic user representations and then transfer-
ring them to downstream tasks. The main advantages of these
pre-training approaches can be roughly summarized into two
aspects. On the one hand, the pre-trained model can capture
general-purpose user preference via exploiting historical user-
item interaction data. For example, PeterRec [16] randomly
masks a certain percentage of items and then predicts them
at these masked positions. It is the first work clearly (by ex-
periments) demonstrating that the learned user representations
could be transferred to improve multiple user-related tasks,
including but not limited to profile predictions and cold-user
based recommendations [17]. On the other hand, the pre-
trained network can obtain knowledge from some auxiliary
tasks when learning user representations, which can be used
to enhance other tasks. One related work is S3-Rec [18] which
first corrupts the original inputs and then restores them by
adopting mutual information as the optimization principle.

While these pre-training methods are proven to benefit a
diversity of user-related downstream tasks, we find that the
common learning paradigms of these methods are usually
based on the item-level optimization objective: first corrupting



the full user behavior sequence by masking and then restoring
these masked tokens. Correspondingly, such methods actually
do not explicitly perform holistic user sequence learning, i.e.,
they largely emphasize the item representation but lack of a
careful design on complete user representation. Hence, we
argue that such learning schemes might not be appropriate
for encoding effective user representations since there exists
a big gap between the item-level optimization objective and
sequence-level user representation learning. In addition, pre-
vious works show that [4], [19], [20] it is more reasonable to
model user representations by distinguishing the preference
difference between users rather than guessing the absolute
preference level on candidate items.

Based on the above analysis, we delve research into learn-
ing general-purpose user representations, which can then be
well transferred to various downstream tasks. To do so,
we propose a novel self-supervised pre-training framework,
namely CLUE, based on applying Contrastive Learning to
train generic User rEpresentations from ordered historical
behaviors. The core idea of CLUE is to regard all histor-
ical interaction records as a whole and construct the self-
supervision signals by transforming views of the original
user behaviors and perform sequence-level comparison opti-
mization. Specifically, we employ two Siamese (weighting-
sharing) networks to learn the user-oriented representations, in
which the optimization objective is to maximize the similarity
of learned representations by the two Siamese (weighting-
sharing) encoders. Meanwhile, we carefully explore the view
transforming strategies to obtain multiple views of the same
user behavior sequences, including the commonly used data
augmentation (DA) strategy (including cropping, masking,
permutation) with explicitly processing sequence behavior and
a strikingly simple yet effective dropout strategy.

The contributions are summarized as follows:
• We present CLUE, a general framework for learning user

representations with sequence-level contrastive learning.
This is greatly different from previous methods (e.g.,
PeterRec [16] and Conure [21]) that model user interac-
tion sequences via the item-level prediction loss. To our
best knowledge, CLUE is also the first work that uses
contrastive pre-training to study the transfer learning of
user representations for downstream tasks.

• We thoroughly investigate the view generating strategies
for CLUE. By comparing with the most popular DA
methods, we surprisingly find that the simple dropout
operation [22] that has been widely adopted by many
deep neural networks (DNN) could be always suffi-
cient and performs better for creating good views in
the recommendation field. This insightful finding largely
simplifies the procedures of CLUE since many explicit
data augmentation [15] strategies can be omitted.

• To verify the effectiveness of CLUE, we perform ex-
tensive experiments on a diversity of user-related tasks
with different scales and characteristics, including the
cold-start recommendations, user profiling, and sequen-
tial recommendations. We also perform valuable visual

explanations for deeply understanding the learned user
embedding. Our experimental results demonstrate that the
user representations learned by CLUE are more effective
and transferable than existing top-performing baselines.

II. RELATED WORK

In this section, we will review related works closely to this
work from two aspects, including user representation learning
and self-supervised learning.

A. User Representation Learning

Learning optimal user representations is a fundamental
research problem in recommendation area. With effective user
representations, systems can not only capture user interest for
delivering a personalized ranking over item set for each user
but also be helpful for user modeling, which is a conceptual
understanding of the user (e.g., user profile prediction [23],
[24]). Earlier methods like matrix factorization (MF) project
the userID into latent vectors by conducting matrix competi-
tion task [20], [25]. Later on, some deep recommendation ap-
proaches [16], [26] are developed to improve recommendation
performances by the powerful representation abilities of deep
learning. Representative methods in [27] propose to leverage
Auto-Encoder to learn latent representations of corrupted user-
item preferences and recommend new items to the users given
the existing preference set as input at prediction stage. Another
prevalent line of deep user representation is to employ the
two-tower architecture to learning high-quality user represen-
tations [3]. Recently, a large body of research [10], [28] show
that sequential recommendation models achieve significant
performance improvements in modeling user preference by
exploiting historical sequence actions. Among them, many
researchers have paid special attention to three lines of work:
RNN-based [8], CNN-based [10], [28], and attention-based
sequential models [29].

B. Self-supervised Learning

Recently, self-supervised learning [30]–[32] have be-
come prevalent since the parameters optimized by the self-
supervised loss can be easily utilized to benefit other tasks.
Most mainstream approaches fall into one of two classes:
generation or discrimination. For generative-based methods,
in NLP area, the language model is a popular self-supervised
objective that learns to predict the next word given the previous
words [33]. Also, the cloze and next sentence prediction
task are widely adopted in [12]. Though these fine-grained
prediction tasks have achieved promising results, some re-
searchers hold that its computation is expensive and might
not be necessary for representation learning [15]. Recently,
discrimination-based methods, such as contrastive learning,
have been well studied in visual representation learning. The
core idea of such methods is to pull the positive example
pairs closer and push the negative instance pairs apart. Some
recent works e.g., [15] demonstrate that such a learning
paradigm could nearly achieve competitive results compared
with supervised learning. Simple and effective instantiations
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Fig. 1. Illustration of the contrastive pre-training network in CLUE, where SG denotes stop-gradient operator.

of contrastive learning have been developed using Siamese
network [34], [35]. Most of these contrastive learning methods
benefit from a large number of negative examples [36], [37].
Also, recent work in [38], [39] proposed to directly predict the
output of one view from another view without using negative
instance comparison.

When it comes to recommendation area, existing pre-
training methods consistently adopt item-level optimization
objectives. To the best of our knowledge, it remains under-
explored how to present unsupervised sequence-level user rep-
resentations and whether such representations are transferable
across different tasks.

III. PROBLEM AND FRAMEWORK OVERVIEW

In this section, we first formalize the user representation
pre-training problem and introduce the overview of CLUE
framework.

A. Problem Statement

In this paper, we represent column vectors and matrices
by bold italic lower case letters and bold upper case letters,
respectively. Suppose we have two tasks: a pre-training and
a downstream task. Let U and I respectively denote the set
of user and item set, where |U| and |I| indicate the number
of users and items. We represent the user behavior sequence
for user u with xu = {xu1 , xu2 , ..., xun}(xui ∈ X ), where X
denotes the item set in pre-training stage. Here xut denotes the
t-th interacted item of u and n denotes the length of interaction
sequence for user u. If the sequence length is more than n,
we consider the most recent n actions. Each instance in the
downstream task consists of a userID u and its label. If u has
g different labels, then there will be g instances for u in the
downstream task.

B. Framework Overview

The training procedure of CLUE is composed of two
standard transfer learning stages. The first stage is to learn a
high-capacity user representation model directly from massive
user sequential records. Then, there is a supervised fine-
tuning stage, where the pre-trained representation is adapted

to the downstream task with the ground truth of new tasks.
Figure 1 illustrates the proposed self-supervised pre-training
framework. In popular contrastive learning schemes, seman-
tically close neighbors usually are pulled close together and
non-neighbors are pushed apart. However, it is hard to dis-
tinguish whether two users are semantically close neighbors
or not. Hence, we discard the widely used negative sampling
method [15], [40] but only retain positive examples as training
signals by following recently proposed methods [38]. In the
pre-training network, for user u, two randomly augmented
views of the same sequence behaviors including x̄u and x̃u

are regarded as input. Then, we employ two Siamese (weight-
ing) networks, referred to as student and target network, for
transforming the user sequential behaviors into latent represen-
tations, by following the commonly used schemes [39]. During
training, the Siamese network projects the input sequence
into latent representations and then tries to discriminate the
matching results from one another.

Specifically, in CLUE framework, we need to deal with two
main challenges: (1) how to alleviate the model collapse issue
caused by the discarding of negative instance (Section IV-A);
(2) how to construct positive pairs as self-supervised training
signals via effective data augmentation (DA) strategies (Sec-
tion IV-B).

IV. CLUE

In this section, we firstly present the general pre-trained
network of CLUE, which aims at characterizing the user
similarity with effective user representations learned from
sequence-level comparison. Then, we introduce how to obtain
view transformations from the same user’s historical behaviors
arranged in chronological order. After that, we introduce the
network transferring process, i.e., transferring the pre-trained
user representation to target user-oriented tasks.

A. Contrastive Pre-training Network

In the following, we would explain the pre-training network
on the basis of the self-attentive architecture in SASRec [41]
since such self-attentive architecture has shown state-of-the-art



results in modeling user dynamic preference [18], [29], [42]
from sequential behavior.

1) User Representation Encoder: In this part, we would
introduce the encoding network, which is composed of the rep-
resentation backbone of user sequential behavior and projec-
tion head. As discussed above, we instantiate the pre-training
network by employing self-attentive based Transformer block
as backbone network to model user sequence actions. The self-
attentive architecture consists of embedding layers and self-
attention blocks.

a) Embedding Layer: In the embedding mapping stage,
we create an item embedding matrix M ∈ R|I|×d, where d
denotes the latent dimension. Given a n-length item sequence,
we apply a look-up operation from M to form the input
embedding matrix E ∈ Rn×d. Besides, we incorporate a
learnable position embedding P ∈ Rn×d to enhance the
input representation of the item sequence. By this means,
the sequence representation EI ∈ Rn×d can be obtained by
summing two embedding matrices: EI = E + P.

b) Self-attention Block: Based on the embedding layer,
we develop the item encoder by stacking multiple self-
attention blocks. A self-attention block generally consists
of two sub-layers, i.e., a multi-head self-attention layer and
a point-wise feed-forward network. The multi-head self-
attention mechanism has been adopted for effectively extract-
ing the information selectively from different representation
subspaces. Specifically, the multi-head self-attention is defined
as:

MultiHeadAttn(Fl) = [head1,head2, ...,headh]WO,

headi = Attention(FlWQ
i ,F

lWK
i ,F

lWV
i ),

(1)

where the F l is the input for l-th layer. When l = 0, we set
F0 = EI, and the projection matrices WQ

i ,W
K
i ,W

Q
V ∈ Rd×d

and WO ∈ Rd×d are the corresponding learnable parameters
for each attention head. The attention function is implemented
by scaled dot-product operation:

Attention(Q,K,V) = softmax(
QK>√

d/h
)V, (2)

where Q = FlWQ
i ,K = FlWK

i , and V = FlWV
i are the linear

transformations of the input embedding matrix,
√
d/h is the

scale factor to avoid large values of the inner product.
Though multi-head self-attention is beneficial to extract

useful information from previous items’ embeddings with
adaptive weights, it is still based on a simple linear transfor-
mation. To endow the model with non-linearity, a two-layer
feed-forward network is applied. Formally, the computation is
defined as:

Fl = [FFN(Fl
1)>; ...; FFN(Fl

n)>],

FFN(x) = (ReLU(xW1 + b1))W2 + b2,
(3)

where W1,b1,W2,b2 are trainable parameters. It should be
noted that we omit the description of used dropout mechanism
in [41] for clarity.

c) Projection Network: Inspired by the idea of label
embedding [43], we convert the discrimination problem of
user behavior sequence into latent vector matching tasks.
Hence, we additionally add a projection head to further project
the augmented sequence into a common high-dimensional
space, in which the similarity of two augmented views is
readily computed as the distance between them. In detail, we
employ 3 fully connected (FC) layers, equipped with batch
normalization (BN) operation for each layer, as projection
head by following [15]. In particular, we only retain the user
representation module at the fine-tuning stage.

2) Prediction Network: To prevent the model collapse
issues [?], we further add a predictor head for the student
network. Similarly, we employ a 2 FC layer equipped with
BN operation as the prediction head. Note that this predictor
is only applied to the student branch, making the architecture
asymmetric between the student and target pipeline.

3) Contrastive Optimization Objective: The representation
distance between two views of corrupted sequence input can
be measured by cosine similarity. Equivalently, we take the
negative through cosine similarity as the optimization objec-
tive and minimize the semantic matching error between the
normalized predictions and target projections,

D(p1, z2) = − p1
||p1||2

· z2
||z2||2

, (4)

where ‖ · ‖2 denotes l2-norm, p1 , hϑ(fθ(x̄
u)) and z2 ,

fθ(x̃
u). This is equivalent to the mean squared error of l2-

normalized vectors, up to a scale of 2.
Furthermore, inspired by previous work [38], we define a

symmetrized loss as:

Lpre =
1

2
D(p1, z2) +

1

2
D(p2, z1). (5)

Note that one key component for our pre-trained network
is a stop-gradient (sg) operation, which is used to avoid
the model collapse issue. Such operation has been widely
adopted in several existing prevalent contrastive learning ap-
proaches [13], [38]. Hence, we modify it as

D(p1, sg(z2)), (6)

where it means that z2 is treated as constant in this term.
Similarly, the equation in Eq (5) can be implemented as:

Lpre =
1

2
D(p1, sg(z2)) +

1

2
D(p2, sg(z1)), (7)

where the encoder on x̃u receives no gradient from z2 in the
first term, while it receives gradients from p2 in the second
term. Here, we employ the SGD optimizer and use it in a mini-
batch manner. In addition, we briefly summarize the proposed
pre-training network in Algorithm 1.

B. Data Augmentation Strategies

In this subsection, we discuss another core part in CLUE,
i.e., how to construct different views from the same sequential
user behaviors via data augmentation (DA) strategies. The
appropriate DA plays a vital role in CLUE framework since
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Algorithm 1 Contrastive Pre-training Network
1: Initialize parameters θ, ϑ.
2: While θ, ϑ has not converged do
3: x̄, x̃ = Aug(x),Aug(x).
4: z1, z2 = fθ(x̄1), fθ(x̃2).
5: p1, p2 = hϑ(f(x1)), hϑ(f(x2)).
6: Update parameters θ, ϑ by computing the gradients
7: of the contrastive loss function in Eq (7).
8: end while

the essence of contrastive learning is committed to learning
the invariance of different views of the same data [15].

Although data augmentation techniques have been widely
explored in other areas, it still remains under-explored on how
to generate self-supervised training signals from massive user
behavior sequences. Hence, we would discuss how to construct
positive instance pairs for contrastive pre-training framework
from two perspectives as shown in Figure 2.

1) Explicit Data Augmentation: By revisiting previous
works [10], [16], we could obtain satisfied recommendation
lists without strictly following the chronological order. Ac-
tually, such intuition can be easily accepted in real-world
scenarios. Take a toy example, after a user purchases phone,
she may click a phone case and screen protector in the session,
but there is no obvious sequential dependency among these
items - in other words, it is likely that the user takes action
in any order. Based on the above analysis, we introduce three
augmentation approaches. (1) item masking: following, ran-
dom items are sampled and replaced with [MASK] elements;
(2) item cropping: randomly select a continuous sub-sequence
and drop it off; (3) permutation: random select a piece of sub-
sequence segments are shuffled it with a random order.

2) Implicit Data Augmentation: The principal assumptions
of self-supervised contrastive learning are to seek representa-
tions of the world that are invariant to a family of viewing
conditions. It is natural since it is commonsense that how
you look at an object does not change its identity. Hence,

we propose to generate noise views by leveraging the random
dropout operation [22], which implicitly takes effect in the
body of neural network. The idea is extremely simple: the key
ingredient to getting this to work with identical positive pairs is
through the use of independently sampled dropout masks. In
standard training self-attentive-based sequential architecture,
there is a dropout mask placed on fully connected layers
as well as attention probabilities. We simply feed the same
sequential behaviors to the encoder network twice by applying
different dropout masks. Please note that it is just the standard
dropout mask in the Transformer block and we do not add any
additional dropout. In this way, the positive pair takes exactly
the same sequence behavior as input, in which the only differ-
ence about the embedding is caused by the dropout. Extensive
experiments about these implicit augmentation methods would
be further discussed in the experimental part.

C. User Representation Evaluation

In this subsection, we aim to adapt the learned representa-
tion to specific downstream tasks.

1) User Representation Transferring: After the pre-trained
stage, we obtain the pre-trained user representation model
which has been optimized with training examples derived
directly from unlabeled raw data. For obtaining each user
representation, we propose to insert a special token -User
Representation ([UR] token) - at the end of the user behavior
sequence during the pre-training and treat its embedding as the
representation of the current user. Then, followed by a simple
classifier (e.g., softmax classifier), the user representation can
be used to construct a predictor for downstream tasks. Instead
of introducing a new parameter transferring technique, we
primarily interested in showing readers how would the learned
user representations perform applied in downstream tasks. In
this work, we evaluate the target task by fine-tuning the whole
pre-trained user encoder. We are aware of other advanced user
representation manner which might improve the performance
of downstream tasks, such as averaging the item representation



at the last layer. We leave it in the future since it is not the
focus of this work.

2) Adapting to User-related Tasks: In this work, we aim
to evaluate the effectiveness of learned pre-trained user repre-
sentations based on three types of downstream tasks: 1) cold-
start recommendation; 2) user modeling refers to the process of
obtaining the user profile, which is a conceptual understanding
of the user for personalized RS service; 3) sequential recom-
mendation refers to modeling user interests by capturing se-
quential patterns on historical interaction records. All of these
three downstream tasks can be regarded as standard multi-class
classification optimization problem [8], [26], [44] by learning
the connection between context input and supervision signals.
Without loss of generality, we consistently employ softmax
cross-entropy loss as the optimization objective for three
downstream tasks. Further, we describe more task-specific
downstream task details in the corresponding subsection of
Section V.

D. Summary and Remarks

To summary, we propose a self-supervised pre-training
framework for obtaining user useful user representation via
sequence-level contrast optimization. Actually, the proposed
pre-training framework is very flexible. First, the proposed
pre-training network is a model-agnostic framework. That
is, the user representation backbone is not limited by the
used self-attentive-based architecture. Other powerful user
encoding representation networks, such as RNN-based, CNN-
based models, can also be used to instantiate the pre-training
network. Second, the pre-training framework performs asym-
metric architecture since that such structure can help alleviate
the model collapse issue cased by removing negative instance
sampling process. Third, the implicit augmentation strategies
are very simple but very effective in obtaining different views
of the same sequential user behaviors. This insightful setting
largely simplifies the procedures of CLUE since many explicit
DA strategies can be omitted.

V. EXPERIMENTS

In this section, we conduct extensive experiments to validate
the effectiveness of the CLUE framework.

A. Experimental Settings

To evaluate the effectiveness of our proposed CLUE, we
respectively apply the learned generic user representations
for three user-related tasks: cold-start recommendation, user
profiling, and sequential recommendation tasks. In the several
downstream tasks, we encourage the knowledge learned from
the self-supervision training signals can be helpful for boost-
ing downstream tasks. To verify whether the self-supervised
learned user representation helpful for downstream tasks, we
compare CLUE with two main cases: well-pre-trained and
non-pre-trained settings. We denote CLUE with randomly
initialized weights as CLUEZero.

1) Cold-start Recommendation: We first empirically study
the effectiveness of the learned user representation by transfer-
ring knowledge cross different platform for cold-start recom-
mendation. To be more specific, we aim to verify whether
the learned user representations can be universal and ef-
fective to benefit cold-start recommendation across different
platforms, where the same users are involved. For well-pre-
trained settings, we choose PeterRec [16] as competitive
baselines, in which mask item prediction loss is considered
as the pre-training optimization objective to learn generic user
representations for downstream tasks. Furthermore, for a fair
comparison, we also treat the user behavior in source domain
as features and feed it into DeepFM [45], NFM [46]. Here,
we conduct experiments on several large scale datasets made
public by [16] including two cold-start recommendation and
three user profile datasets.
• ColdRec-1: This contains both source and target datasets.

The source dataset is the news recommendation data
collected from QQ Browser1 recommender systems. For
each user, the behavior sequence is constructed by using
her 50 recent interaction records in chronological order.
For users that have less than 5- interactions, we simply
pad with zero in the beginning of sequence. The target
dataset is collected from Kandian2 where interaction can
be a piece of news, a video, or an advertisement. All
users in Kandian are cold with at most three interactions
(i.e., g ≤ 3) and half of them have only one interaction.
It should be noted that all users in the target domain have
the corresponding records in the source dataset.

• ColdRec-2: It has similar characteristics with ColdRec-
1. Likewise, all users in the target dataset have corre-
sponding records in the source dataset. The source dataset
contains recent 100 interactions of each user including
news and videos. The users in the target dataset have at
most 5 interactions (i.e., g ≤ 5 ).

2) User Profiling: For user profiling task, we choose the
same baselines as the setting of cold-start recommendation.
• AgeEst: It has only a target dataset since all users are

from the source dataset of ColdRec-2, each instance in
AgeEst is a user and her bracket label (g = 1) - one class
represents 10 years. The source dataset contains recent
100 interactions of each user including news and videos.

• GenEst: Similar to AgeEst, each instance in GenEst is
a user and her gender (male or female) label (g = 1)
obtained by the registration information.

• LifeEst: Similar to AgeEst, each instance in LifeEst is a
user and her life status label (g = 1), e.g., single, married,
pregnancy or parenting.

3) Sequential Recommendation: In addition, we also verify
the effectiveness of pre-trained methods in terms of enhanc-
ing sequential recommendation problem. Here, we choose
S3Rec [18] as the competitive well-pre-trained baselines,
which is proposed for enhance sequential recommendation by

1https://browser.qq.com/
2https://sdi.3g.qq.com/v/2019111020060911550



TABLE I
STATICS OF THE DATASETS FOR DOWNSTREAM USER-ORIENTED TASKS.

Dataset
Cold-start recommendation User profiling Sequential recommendation
ColdRec-1 ColdRec-2 AgeEst GenEst LifeEst Movielens30 Movielens50

# Num. users 1,649,095 1,472,248 1,551,357 1,548,844 1,075,010 876,162 552,438
# Num. source items 191,014 645,980 - - - - -
# Max length in source domain 50 100 - - - - -
# Num. target items (classes) 20,342 17,879 646,279 645,729 487,728 23,515 23,515
# Max length in target domain 3 5 100 100 100 30 50

TABLE II
PERFORMANCE COMPARISON IN TERMS OF MRR@10 AND Recall@10 ON COLD-START RECOMMENDATION AND Acc ON USER PROFILING .

Model
ColdRec-1 ColdRec-2 AgeEst GenEst LifeEst

MRR@10 Recall@10 MRR@10 Recall@10 Acc Acc Acc

NFM 0.0070 0.0075 0.0420 0.0363 0.6156 0.8940 0.5135
DeepFM 0.0090 0.0100 0.0434 0.0373 0.6312 0.9025 0.5153

CLUEZero 0.0119 0.0129 0.0464 0.0393 0.6248 0.9015 0.5123
PeterRec 0.0123 0.0134 0.0470 0.0397 0.6369 0.9056 0.5191
CLUE 0.0139 0.0150 0.0481 0.0403 0.6268 0.9019 0.5354

regarding the mutual information maximization principle as
pre-training optimization objective. In addition, we also choose
previous representative sequential recommenders, including
GRU4Rec [8] and Caser [28], as compared baselines. Here,
we conduct extensive experiments on the benchmark dataset
MovieLens3.

• MovieLens30 & MovieLens50: To make the reliability of
experimental results, we perform the basic pre-processing
by filtering out interactions with less than 5 users and
users with less than 10 items. Then, we define the
maximum length of the interaction sequence as 30 (or
50). Sequences shorter than 30 (or 50) will be padded
with zero at the beginning of the sequence.

More statistics of our datasets are presented at Table I.
4) Evaluation Metrics: For cold-start recommendation and

user profile prediction, we randomly split each dataset into
training (80%), validation(5%), and test (15%) by follow-
ing [16], [45]. As for sequential recommendation, following
previous works [41], [47], [48], we apply the leave-one-out
strategy for evaluating the performance of sequential recom-
mendation. Concretely, for each user interaction sequence, the
last item is used as the test data, the item before the last one
is used as the validation data, and the remaining data is used
for training. For the item recommendation task in sequential
modeling and cold-start issues, we use two popular ranking
metrics - Mean Reciprocal Rank (MRR@10) and Recall@10.
Note that we calculate metrics according to the ranking of all
candidate items rather than the sampled version and report the
average score of overall test users. We refer interested readers
to [49] for more details. We also use the classification accuracy
(denoted by Acc) for user profile prediction, where Acc =
number of correct predictions/total number of predictions. For
all metrics, the higher the value, the better the performance.

3http://files.grouplens.org/datasets/movielens/

5) Implementation Details: All of the methods are trained
on a Linux server with two 2.20 GHz Intel Xeon E5-2650
CPUs and four Tesla V100 GPUs. For the self-attentive
architecture4, Caser5, GRU4Rec 6, we use codes provided
by the corresponding authors. For NFM and DeepFM, we
implement it by Tensorflow. For common parameters in all
models, we set the batch size b as 64 due to computation
cost issue and set the embedding hidden size with 64. All
other hyper-parameters and initialization strategies are either
followed by the suggestion from the authors’ methods or tuned
on validation sets. We report the results of each baseline
under its optimal hyper-parameter settings. In particular, the
number of self-attention blocks and attention heads are set as
2 and 4 for all experiments. In the Transformer architecture,
the default dropout probability is 0.5. In both pre-training
and fine-tuning stage, the learning rate is set to 0.001, and
all methods are optimized by standard Adam optimizer. The
explicit augmentation proportion and dropout probability in
implicit augmentation is search from [0.1, 0.2, ..., 0.9] for
several data augmentation techniques. It should be noted that
dropout strategy is the default setting for the experimental
results of CLUE.

B. Overall Performance of Downstream Tasks

The results of downstream tasks, evaluated by fine-tuning
the entire pre-trained model, are respectively shown in Table II
and Figure 3. Based on the results, we can find:

For several baseline methods in the cold-start recommen-
dation and user profiling, we notice that self-attentive recom-
mendation architecture respectively performs superior perfor-
mance in the cold-start recommendation and shows compet-
itive performance in user profile prediction tasks compared

4https://github.com/kang205/SASRec
5https://github.com/graytowne/caserpytorch
6https://github.com/hidasib/GRU4Rec
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Fig. 3. Sequential recommendation performance comparison.

with non-sequential based methods, i.e., NFM and DeepFM.
Such results reflect it is necessary to consider the sequen-
tial behavior pattern for cold-start recommendation and user
profiling tasks. Also, we notice that the self-attentive surpass
previous sequential recommender models, i.e., GRU4Rec and
Caser, in sequential recommendation tasks. Such experimental
phenomenon indicates that self-attentive-based architecture is
largely suitable for capturing sequential behavior patterns for
item recommendation tasks.

For cold-start recommendation and user profiling tasks, we
notice that all pre-training-based methods could consistently
benefit the three downstream tasks by transferring knowledge
from constructed self-supervised training signals. Since all
three methods, including CLUEZero, PeterRec, and CLUE,
adopt the same architecture strictly following the same hyper-
parameter setting, such results suggest that the learned user
representation (from different platforms) can be transferred
to help downstream tasks while the same users are involved.
Also, we could find that our proposed CLUE could surpass
previous competitive baseline methods PeterRec in most sit-
uations, which adopts item-level optimization objectives for
obtaining pre-trained parameters. Such results demonstrate that
sequence-level pre-training be more suitable for characterizing
user similarity or achieve competitive results.

For sequential recommendation tasks, compared with base-
lines, it is clear to see that CLUE performs better than them
on two datasets. Such results reflect the necessity of explicitly
optimizing user representation for sequential recommendation
tasks. The main reason behind such phenomenon reflects
the transferred knowledge trained with our sequence-level
optimization goal can be helpful for item-level sequential
recommendation objective.

C. Performance Comparison w.r.t the Training Data Sparsity

In actually, in CV or NLP-like domain, pre-training methods
have been empirically verified in largely benefiting the target
task while data is extreme sparsity. Hence, we are interested
in analyzing similar phenomenon in RS area by simulating the
data sparsity scenarios with leveraging different proportions of
the full dataset, i.e., 40%, 60%, 80%. For clarity and saving
space purpose, we only report the best results of CLUE with
dropout augmentation strategy on ColdRec-2 and show the
specific performance comparison in Figure 4. As we can see,
the recommendation performance substantially drops when
less training data is used. Nevertheless, CLUE consistently
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Fig. 4. Cold-start recommendation performance comparison w.r.t the amount
of training data on ColdRec-2.

outperforms baselines especially in data with a larger sparsity
level (40%). This observation implies that the CLUE shows
some potential to alleviate the data sparsity issue via fully
mining the knowledge from limited user behavior information.

TABLE III
PERFORMANCE COMPARISON W.R.T VARIOUS DATA AUGMENTATION

STRATEGIES INCLUDING THREE EXPLICIT AND ONE IMPLICIT STRATEGY.

DA strategies
MovieLens30 MovieLens50

MRR@10 Recall@10 MRR@10 Recall@10

Item masking 0.0494 0.1178 0.0420 0.1006
Item cropping 0.0483 0.1163 0.0395 0.0953
Permutation 0.0489 0.1169 0.0406 0.0980

Dropout 0.0509 0.1203 0.0419 0.0999

D. Impact of Data Augmentation Strategies

In this subsection, we turn to analyze the performance of
CLUE in the setting of different augmentation strategies as
illustrated in Section IV-B.To save page space, we only report
the results of sequential recommendation on MovieLens30
and MovieLens50. We show the sequential recommendation
performance in Table III.

First, we could find that a few explicit augmentation compo-
sitions only perform slightly better than compared baselines.
The main reason behind such results might be such augmen-
tation composition strategies dramatically destroy the original
user sequence behavior and provide limited useful knowl-
edge for downstream tasks. Surprisingly, we notice that the
simple implicit data augmentation strategies, i.e., leveraging
dropout mask to generate augmented views for self-supervised
contrastive learning, achieve competitive or even superior
performance than common explicit strategies. Actually, such
insightful findings are very useful and can largely simplify the
procedures of our proposed self-supervised contrastive learn-
ing framework since these complicated explicit DA strategies
can be replaced.

Based on this, we also study the performance comparison
w.r.t different dropout ratio range from {0.1, 0.3, 0.5, 0.7, 0.9}
for exploring the sensitivity to dropout probability. As is shown
in Figure 5, we notice that the implicit augmentation strategy
is largely sensitive to the dropout probability. We guess the
main reason is the random dropout augmentation strategy has
the strong capacity to generate noise transformation for the
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Fig. 5. Impact of the implicit DA (i.e., dropout based) strategies on the
MovieLens30 dataset with different dropout probabilities.

same sequential behavior input via non-linear transformation.

E. Ablation Studies of Model Collapse Issue

In this subsection, we conduct ablation experiments to
verify the effectiveness of stop-gradient operation and asym-
metric framework in alleviating model collapse issues due
to discarding the use of negative instances. In view of the
limited space, we mainly report the experimental results of
sequential recommendation task on MovieLens30. Figure 6
(left) presents a self-supervised contrastive training loss on
“with” and “without stop-gradient operation”. It should be
noted that all hyper-parameters are kept unchanged and stop-
gradient is the only difference. Likewise, in Figure 6 (right),
we also report the training loss in terms of whether preserve
predictor head. From the results, removing either the stop-
gradient operator or the predictor head, we can find that the
optimizer quickly reached the minimum possible loss of −1.
Such results mean that almost all users are mapped into a small
area and are somehow collapsed. Such ablation results indicate
that it is vital to simultaneously preserve two key components
(i.e., asymmetric framework and stop-gradient operation) for
preventing severe model collapse [38], [39].

F. Understanding the Pre-trained User Representations

Recently, uniformity and alignment have been recognized
as two key properties for measuring the quality of represen-
tations [22], [50]. Specifically, the former property indicates
how well the embedding are uniformly distributed while the
latter property measure how close the semantic similar instance
while are mapped in latent space. To deeply understand the
quality of user representation trained via different methods, we
project the user representation into 2-dimensional space using
PCA for visualization. For clarity and saving space purpose,
we only show the case of user embedding trained by PeterRec
and CLUE (leveraging dropout augmentation strategy) on
GenEst dataset. From the results shown in Figure 7, we
notice that the user representation optimized with PeterRec are
mapped in a narrow space compared with the user embeddings
trained with CLUE. To some extent, we can find that such
visualization provides some evidence for help illustrating why
the user representation trained with CLUE could achieve
promising results for downstream tasks. Actually, such insight-
ful findings can motivate us further deeply think about the key
properties w.r.t user digital representations.
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Fig. 6. Ablation analysis: (a) removing the predictor head; (b) removing the
stop-gradient (sg) operator.
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Fig. 7. User representation 2D visualization on GenEst dataset: (a) visualiza-
tion of user embeddings trained with PeterRec, and (b) visualization of user
embeddings from CLUE.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we delved the research into learning trans-
ferable user representations, which can be utilized to ben-
efit multiple user-related tasks. We argue that modeling the
user behaviors with sequence-level optimization objective can
bring more benefits for learning user-oriented representa-
tions. Hence, we proposed a novel self-supervised pre-training
framework called CLUE, in which we innovatively adopted
contrastive learning as pre-training optimization objective for
sequence-level user representations optimization. Furthermore,
we also proposed a new perspective on data augmentation via
adopting continual transformation with user sequence as input.
Extensive empirical studies were conducted on several user-
related tasks, showing the superiority of CLUE in character-
izing user similarity from sequential behaviors compared with
competitive approaches. Furthermore, we also reported some
insightful observations by extensive ablation studies, which
might be directions for future research in the recommender
systems area.

We believe our attempts can inspire more work, and summa-
rize the potential future directions from three main directions:
(1) extend our CLUE by considering user behavior records
and content information, simultaneously; (2) fuse item-level
prediction loss into CLUE methods for furthering enhancing
user representations; (3) explore automatic data augmentation
techniques or adaptively corrupt the sequence input according
to the specific downstream user modeling tasks.
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