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ABSTRACT

Tag-aware recommender systems (TRS) utilize rich tagging records

to better depict user portraits and item features. Recently, many

efforts have been done to improve TRS with neural networks. How-

ever, these solutions rustically rely on the tag-based features for

recommendation, which is insufficient to ease the sparsity, ambigu-

ity and redundancy issues introduced by tags, thus hindering the

recommendation performance.

In this paper, we propose a novel tag-aware recommendation

model named Tag Graph Convolutional Network (TGCN), which

leverages the contextual semantics of multi-hop neighbors in the

user-tag-item graph to alleviate the above issues. Specifically, TGCN

first employs type-aware neighbor sampling and aggregation oper-

ation to learn the type-specific neighborhood representations. Then

we leverage attention mechanism to discriminate the importance of

different node types and creatively employ Convolutional Neural

Network (CNN) as type-level aggregator to perform vertical and

horizontal convolutions for modeling multi-granular feature inter-

actions. Besides, a TransTag regularization function is proposed to

accurately identify user’s substantive preference. Extensive experi-

ments on three public datasets and a real industrial dataset show

that TGCN significantly outperforms state-of-the-art baselines for

tag-aware top-𝑁 recommendation.
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Figure 1: An example of graph for easing sparsity, ambiguity

and redundancy. Tag “apple” is polysemy (ambiguity); “cell-

phone” and “mobile phone” are synonymous (redundancy).

1 INTRODUCTION

Social tagging systems, also known as folksonomies, are widely

used in various websites and applications, where users can freely

annotate online items (e.g., movies, artists) with arbitrary tags [9].

Generally, these tags are composed by laconic words or phrases that

express users’ interests in the certain item. Benefit from the pithi-

ness, tags are more direct and objective than reviews, which can not

only indicate user preferences, but also summarize characteristics

of items [5, 19]. Therefore, user-defined tags can be introduced into

recommender systems for alleviating the cold-start problem [35]

and improving recommendation quality.

To integrate social tagging information, a common paradigm is

to transform the tags into a multi-hot feature vector and further

feed into feature-based models for recommendation. For example,

CFA [36] uses the sparse autoencoder (SAE) to obtain tag-based

user latent representations and combines it with user-based collab-

orative filtering (CF). Besides, DSPR [31] and HDLPR [32] leverage

the multi-layer perceptron (MLP) to process such sparse multi-hot

feature vector and extract abstract user and item representations.

However, the sparsity issue arises as some users annotate a small

amount of tags to a few items, making it difficult to recognize users’

preferences. Besides, tags may also suffer from ambiguity and

redundancy issues [23] due to the lack of contextual semantics.

For example, polysemous tag “apple” could be confused as a kind of

fruit or a technology company if no other contextual information

is given, which introduces ambiguity to the feature-based models.

Moreover, limited by the diversity in user’s writing or expression

styles, some tags with different spellings have the same meanings

and indicate similar preferences, such as “mobile phone” and “cell-

phone”. However, due to the missing of relationship modeling in

feature-based models, these synonymous tags may be interpreted

as completely different semantics, resulting in redundancy.
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To solve these issues, we argue that, by organizing the user tag-

ging triple records as a heterogeneous user-tag-item graph, the

multi-hop neighbors contribute to provide more contextual seman-

tic information. Figure 1 illustrates an example. User𝑢1 only has tag
𝑡1 (“apple”), making the feature vector highly sparse. By aggregating

information of multi-hop neighbors, the sparsity can be well allevi-

ated. Besides, not only polysemous tag 𝑡1 (“apple”) can be clearly

interpreted as a technology company rather than a kind of fruit,

but also synonymous tags 𝑡2 (“mobile phone”) and 𝑡3 (“cellphone”)
can be semantically close due to similar neighborhood subgraphs.

As such, ambiguity and redundancy can be eased commendably

with the help of multi-hop neighbors in the graph.

Several recent works which utilize Graph Neural Network (GNN)

for recommendation have demonstrated its effectiveness to inte-

grate both node features and topological structure for represen-

tation learning, such as PinSage [33], NGCF [29], KGAT [28] and

HGAT [18]. However, combining user tagging records with GNN-

based models for recommendation poses three unique challenges:

C1: How to aggregate heterogeneous neighbors with all types

of neighborhood information preserved and the different

impact of neighbors considered is important in heteroge-

neous graph modeling. User-tag-item graph is sophisticated

as each central node may have different numbers and types

of neighbors. Therefore, it is essential to consider the diverse

contributions of individual heterogeneous neighbors.

C2: Once different types of neighborhood are represented, how

to model feature interactions among them is vital. Existing

heterogeneous graph convolutional models simply perform

pooling-based operations during the information updating

stage, neglecting the informative feature interactive signals.

However, effectively modeling feature interactions is critical

in recommender systems [6, 15].

C3: As user annotated tags are the key factor to represent user’s

preference over items, how to capture these semantics in

the user-tag-item triplets is essential. Such strong seman-

tics among user, tag and item may be important to make

the recommendation satisfactory. However, the aggregation

strategy of GNN-based models overlooks such semantics,

leading the learned representations sub-optimal.

To solve the issues faced by tag-aware recommendation and over-

come the above three challenges, we propose a novel end-to-end

neural recommendation framework named Tag Graph Convolu-

tional Network (TGCN). Specifically, to alleviate sparsity, ambi-

guity and redundancy issues, we utilize the user tagging records

to construct an undirected weighted Collaborative Tag Graph

(CTG). Based on the CTG, our proposed TGCNmeticulously designs

some modules to tackle the above three challenges. First, to cope

with the heterogeneity of graph nodes, we propose a type-aware

neighbor sampling and aggregation operation. The heterogeneous

neighbor sampling strategy is designed to sample a fixed size of

neighbors for each type and the type-aware neighbor aggregator is

proposed to learn the type-specific neighborhood representation at-

tentively. Second, to effectively capture feature interactions among

different types of neighborhood representations, we first leverage

type-level attention to discriminate the importance of different node

types and then creatively replace the general pooling-based method

with CNN which performs vertical and horizontal convolutions

to capture multi-granular feature interactions. Third, to capture

the semantics in user-tag-item triplets and depict user’s preference

accurately, we design a TransTag regularization function to model

the node representations on the granularity of annotation triples

and perform jointly learning with the recommendation task.

To sum up, our contributions in this paper can be summarized

as follows:

• We construct CTG based on the user tagging records and

leverage the contextual semantics of multi-hop neighbors

to ease sparsity, ambiguity and redundancy issues existing

chronically in the tag-aware recommendation.

• Wedevelop a novel tag-aware recommendationmodel TGCN

to learn node representations. Through employing type-

aware neighbor sampling and aggregation strategy, as well

as CNN-based information updating operation, TGCN can

sufficiently extract informative features from heterogeneous

neighbors. Besides, we introduce TransTag function and

perform jointly learning to further regularize node represen-

tations with the semantics of annotation triples preserved.

• We perform extensive experiments on three public datasets

and a real industrial dataset, demonstrating significant im-

provements of TGCN over state-of-the-art methods for tag-

aware top-𝑁 recommendation.

2 RELATEDWORK

2.1 Tag-aware Recommendation

Recent research shows impressive performance by incorporating

social tagging information into neural network-based methods for

personalized recommendation. These methods transform the tags

into a sparse feature vector and leverage neural network to extract

latent representations. CFA [36] uses the stacked SAE to obtain

tag-based user abstract representations and combines with user-

based CF for recommendation. DSPR [31] leverages the MLP to

map the tag-based user and item profiles into an abstract feature

space and maximizes deep-semantic similarities between user and

relevant items. Based on this model, HDLPR [32] uses the autoen-

coder (AE) with reconstruction errors for further accelerating the

learning progress. As for rating prediction, TRSDL [16] utilizes

MLP to extract item latent representations and then uses recurrent

neural network (RNN) to process sequential historical items for

building user portraits. Besides, social tags can be introduced into

recommender systems as a kind of superior side information and

combine with neural networks to make recommendation [25].

Despite a substantial amount of effort has been made to tag-

aware recommendation, these feature-based solutions cannot effec-

tively alleviate the sparsity, ambiguity and redundancy problems.

Our proposed method organizes the user tagging records into a

CTG where the multi-hop neighbors can provide more contextual

semantics for enriching features and alleviating problems.

2.2 GNN-based Representation Learning

Graph neural networks which aim to extend the deep neural net-

works to deal with arbitrary graph-structured data, have received

widespread attention in recommender systems recently. GCN [12]

leverages a spectral graph convolutional operation to encode both
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graph structure and nodes features. Then GC-MC [1] first applies

GCN on the user-item bipartite graph to achieve link prediction. Be-

sides, NGCF [29] improves the recommendation effect by explicitly

modeling the high-order collaborative signals. In order to identify

the importance of neighbors, GAT [27] introduces attention mecha-

nism to measure impacts of different neighbors. On the other hand,

GraphSage [7] performs a non-spectral graph convolution over a

fixed size of sampled neighbors to integrate neighbor features for

learning accurate node representations. Based on this, PinSage [33]

deploys it at Pinterest for web-scale recommendation.

To make full use of side information beyond modeling user-

item interactions, KGAT [28] incorporates user-item graph with

knowledge graph and combines graph convolution with attention

mechanism to get finer node representations. For heterogeneous

graph modeling, HGAT [18] utilizes a dual-attention network to

discriminate the importance of neighbor nodes and node types.

Moreover, HetGNN [34] jointly considers heterogeneous contents

encoding, type-based neighbors aggregation and types combination

to perform heterogeneous graph representation learning.

Although these GNN-based models have made progress in homo-

geneous or heterogeneous graph representation learning, applying

them directly on CTG is difficult to overcome the challenges men-

tioned in Section 1, which prompts us to propose TGCN model. A

more comprehensive comparison will be elaborated in Section 4.5.

3 PRELIMINARIES

3.1 Problem Formulation

User tagging behavior is defined as a set of tagging assignments gen-

erated by users after interacting with items. To be specific, a tagging

assignment is aggregated into a triple, i.e., 𝑎 = 〈𝑢, 𝑡, 𝑖〉, meaning

that user 𝑢 annotates tag 𝑡 to item 𝑖 . These personalized tags reflect
users’ subjective cognition and preferences of the items. Besides,

the collaborative tagging procedure is also conducive to depict the

characteristics of items comprehensively. By exploring these rich

user tagging records, we can better infer user preferences, summa-

rize item features and improve recommendation performance.

Suppose the sizes of user setU, item set I and tag set T are 𝑁𝑢 ,

𝑁𝑖 and 𝑁𝑡 respectively, a folksonomy is a tuple F = (U,T ,I,A)

[9], where A ⊆ U × T × I is a set of assignments 𝑎 = 〈𝑢, 𝑡, 𝑖〉.
The user-item interaction matrix is represented by 𝑅 ∈ N𝑁𝑢×𝑁𝑖 ,

whose entries can be explicit ratings with range [1-5] or implicit

feedback such as click or annotation. In TRS scenario, each entry

𝑅𝑢𝑖 is defined as: 𝑅𝑢𝑖 = 1 if the interaction (annotation) between

user 𝑢 and item 𝑖 is observed, and 0 otherwise. Our research task is

to mine user tagging records and learn a recommendation model

for generating a ranked list of items that will be of interest for each

user 𝑢 ∈ U, i.e., top-𝑁 recommendation.

3.2 Collaborative Tag Graph

Definition 3.1 (Collaborative Tag Graph). Let V , E and W

denote the sets of nodes, edges and edgeweights respectively, where

V = U∪I∪T . A collaborative tag graph is defined as an undirected

weighted graph G = (V, E,W) with a node type mapping function

𝜙 (𝑣) : V → H ,∀𝑣 ∈ V , where H = {1, 2, 3} whose elements

represent user, item and tag node type, respectively. For each edge

𝑒 = (𝑣, 𝑣 ′,𝑤) ∈ E, it represents that the edge weight between node

𝑣 and 𝑣 ′ is𝑤 ∈ W.

For assignment 𝑎 = 〈𝑢, 𝑡, 𝑖〉 in A, we construct three edges

among them. Edge 𝑒 = (𝑢, 𝑖, 1) reflects the interaction relationship

between user 𝑢 and item 𝑖 . Edge 𝑒 = (𝑢, 𝑡,𝑤) describes the tagging

relationship between user 𝑢 and tag 𝑡 . And edge 𝑒 = (𝑖, 𝑡,𝑤) indi-

cates the passive annotated relationship between item 𝑖 and tag 𝑡 .
We assign the weights between user and item as 1, and the weights

between tag and user/item as the frequencies that tags have been

annotated since it can reflect the degree of user interest and item at-

tribute [3]. To be specific, 𝑒 = (𝑢, 𝑡,𝑤) ∈ E means user 𝑢 annotates

some items with tag 𝑡 for𝑤 times. Analogously, 𝑒 = (𝑖, 𝑡,𝑤) ∈ E in-

dicates item 𝑖 is annotatedwith tag 𝑡 by some users for𝑤 times. Take

a simple toy example. Suppose the assignment set is represented as

A = {〈𝑢1, 𝑡1, 𝑖1〉 , 〈𝑢1, 𝑡1, 𝑖2〉 , 〈𝑢2, 𝑡1, 𝑖1〉 , 〈𝑢2, 𝑡2, 𝑖1〉 , 〈𝑢2, 𝑡1, 𝑖3〉}, af-
ter adding a self-loop with weight 1 to each node, the corresponding

CTG G can be built and illustrated in the left of Figure 2.

4 TAG GRAPH CONVOLUTIONAL NETWORK

Tag Graph Convolutional Network (TGCN) is illustrated in Figure 2,

which is composed of three core modules: 1)Type-aware Neighbor

Aggregation, which samples a fixed size of neighbors and aggre-

gates them with type-specific node-level attention for each type;

2) Information Updating, which leverages a type-level attentive

mechanism to re-scale weights of different types of neighborhood

representations and then performs a CNN-based information up-

dating operation to capture multi-granular feature interactions and

update node representations; 3) TransTag Regularization, which

provides a TransTag function to regularize node representations

with the semantics of annotation triples preserved.

4.1 Type-aware Neighbor Aggregation (C1)

In traditional GNN models, such as NGCF [29] and KGAT [18],

nodes propagate and aggregate integral or partial information from

heterogeneous neighbors indiscriminately, shown in Figure 3(a).

We argue it may loss information due to the negligence of intrinsic

differences among heterogeneous neighbors. To solve the challenge

C1, we propose type-aware neighbor sampling and aggregation

strategy, depicted in Figure 3(b). For each node type, a fixed size

of neighbors are sampled and a node-level attention are utilized to

aggregate and obtain type-specific neighborhood representations.

4.1.1 Heterogeneous Neighbor Sampling. Generally speaking, ag-

gregating all neighbors directly may raise several problems. 1) Ex-

ponential growth of the neighborhood size with the number of hops

makes it impractical to store and calculate in large-scale graphs.

2) Due to the various neighbor sizes, some “hot” nodes (popular

items or frequently-used tags) may have plentiful of neighbors

while some “cold” nodes (long-tailed items or esoteric tags) have

only a few neighbors. Therefore, the “hot” nodes embeddings may

be impaired by weakly correlated neighbors while “cold” nodes

embeddings may not be sufficiently represented. 3) Aggregating

all neighbors may lead to over-smoothing issue [14]. The dense

connections between nodes make the neighborhood unduly similar,

resulting in indistinguishable representations. Hence we decide

to adopt sampling strategy to avoid these problems. A common
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approach is random sampling on neighbors, like GraphSage [7].

However, this approach is sub-optimal in the heterogeneous graph.

Random sampling on heterogeneous nodes cannot guarantee that

all types of neighbors will be sampled, making it difficult to preserve

intrinsic features for some types with fewer nodes.

In light of this issue, we design a heterogeneous random sampling

strategy. Specifically, for the 𝑘-th node type (𝑘 ∈ {1, · · · , 𝐾}, 𝐾 = 3),

a fixed-size set of neighbors with node type 𝑘 is sampled uniformly

at random (with replacement) as the receptive field. We use N𝑘
𝑣

to denote the sampled fixed-size neighbors with type 𝑘 for central

node 𝑣 , i.e., N𝑘
𝑣 = { 𝑗 |𝑒 (𝑣, 𝑗,𝑤) ∈ E ∧ 𝜙 ( 𝑗) = 𝑘}. Therefore, given a

central node 𝑣 , the sampled neighbors sets with user, item and tag

type can be represented as N𝑢
𝑣 , N

𝑖
𝑣 and N𝑡

𝑣 , respectively.

4.1.2 Neighbor Aggregation. After sampling neighbors of different

node types, the next step is to aggregate neighbors of the same

type and obtain type-specific neighborhood representations. In

particular, the aggregated type 𝑘 neighborhood representation eN𝑘
𝑣

is given by a weighted sum aggregator:

eN𝑘
𝑣
=

∑

𝑗 ∈N𝑘
𝑣

𝛼𝑣←𝑗e𝑗 , (1)

where 𝛼𝑣←𝑗 is the weight assigned to neighbor 𝑗 for indicating
its importance. To calculate the weight, one of the most pervasive

approach is to set 𝛼𝑣←𝑗 = 1
|N𝑘

𝑣 |
. However, this approach assumes

that all neighbors have equal importance, which is unreasonable.

To alleviate this limitation, we leverage the attention mechanism

to compute weights adaptively. The motivation is that informative

neighbors will contribute more to provide salient features while

irrelevant neighbors will be largely neglected. Specially, we param-

eterize the node-level attention with a two-layer neural network,

which takes both node representations and edge weight into consid-

eration, shown in Eq.(2). The attention network is not only aware of

the central and neighbor nodes, but also consider their interaction

strength (edge weight), making the entire modeling process more

comprehensive.

𝑎𝑣←𝑗 = v𝑇𝑘 ReLU(W
𝑘
1 [e𝑣 ‖e𝑤] +W𝑘

2e𝑗 + b𝑘 ), (2)

where ‖ denotes the concatenation operation, e𝑣, e𝑗 ∈ R
𝑑 are the

embeddings of central node 𝑣 and neighbor 𝑗 , e𝑤 ∈ R𝑏 is the

embedding of edge weight 𝑤 assigned to edge 𝑒 (𝑣, 𝑗,𝑤) which is

partitioned into discrete buckets in the pre-processing. Besides,W𝑘
1 ,

W𝑘
2 , b

𝑘 and v𝑘 are the type-specific trainable parameters for the

𝑘-th node-level attention. The underlying intuition to employ type-

aware aggregators is the intrinsic features of the different types can

be learned separately with fine granularity. Finally, the attention

weight 𝛼𝑣←𝑗 is obtained by normalizing the above attentive score

using softmax, i.e., 𝛼𝑣←𝑗 = softmax(𝑎𝑣←𝑗 ).

4.2 Information Updating (C2)

Once different types of neighborhood are represented, the next

move is to fuse these type-specific neighborhood representations

(including nodes’ self information) and update node information.

Existing heterogeneous graph convolutional models generally lever-

age a pooling-based function (e.g., attentive-pooling [34]) to update

node information, neglecting the feature interactions that is critical

in recommender systems [6, 15]. To cope with challenge C2, we

propose an attentive CNN-based information updating method to

capture multi-granular feature interactions.
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4.2.1 Type-level Information Re-scale. An intuition is different

nodes may have different emphasis on different types of informa-

tion. Therefore, in order to distill conducive type features adaptively,

we employ a type-level attention network to re-scale the weights

of the type-specific neighborhood representations and emphasize

more beneficial signals. By assigning the informative type infor-

mation with a higher weight, the attention mechanism is capable

of suggesting which types to focus on. Specifically, the attention

score is calculated via a two-layer network, shown as:

𝑏𝑘 = p𝑇 ReLU(UeN𝑘
𝑣
+ q), (3)

where U, q and p are the trainable parameters. Similarly, the atten-

tion weight can be obtained by softmax, i.e., 𝛽𝑘 = softmax(𝑏𝑘 ).
Generally speaking, existing heterogeneous GNN-based models

leverage a pooling-based function to fuse and update information

crudely, e.g., e𝑣 =
∑𝐾
𝑘=1 𝛽𝑘eN𝑘

𝑣
in HetGNN [34]. However, we argue

that these methods do not take into account feature interactions,

which is critical to recommender systems [6, 15]. In light of this

defect, we concatenate them as a 2D matrix, i.e.,M𝑣 = ‖𝐾𝑘=1 𝛽𝑘eN𝑘
𝑣
,

and employ a CNN-based method to capture feature interactions.

4.2.2 Feature Interaction Extraction. To capture the informative

multi-granular feature interactions among different types of neigh-

borhood representations, we creatively employ CNN as type-level

aggregator to process 2D information matrixM𝑣 ∈ R𝐾×𝑑 , which

are widely used in image recognition [13] and natural language

processing [10]. Inspired by CCPM [20] and Caser [26] in feature

interactions modeling, we design two kinds of convolution with

different receptive fields to capture different feature interactions.

More precisely stated, “vertical filters” with shape 𝐾 × 1 slide over

the columns ofM𝑣 for extracting bit-level feature interactions while

“horizontal filters” with shape ℎ × 𝑑 capture ℎ-order vector-level
feature interactions.

Bit-level Feature Interactions. To extract prominent feature

interactions from the perspective of embedding dimension, we

employ vertical convolution filters to extract bit-level feature inter-

actions. Vertical convolution filters cover all the three node types

and slide along the embedding dimension direction, denoted as

𝑉 𝑡 ∈ R𝐾×1, 1 ≤ 𝑡 ≤ 𝑚. Each filter 𝑉 𝑡 interacts with each col-

umn of matrix M𝑣 by sliding 𝑑 times from left to right, yielding

convolution result 𝑐𝑡 .

𝑐𝑡 = [𝑐𝑡1, 𝑐
𝑡
2, · · · , 𝑐

𝑡
𝑖 , · · · , 𝑐

𝑡
𝑑 ] . (4)

The 𝑖-th convolution value 𝑐𝑡𝑖 can be represented as:

𝑐𝑡𝑖 = ReLU(M𝑣 [:, 𝑖] � 𝑉 𝑡 ), (5)

where � represents the inner product operator. Particularly, the

vertical convolution result is equal to the weighted sum over the 𝐾
rows ofM𝑣 weighted by filter𝑉

𝑡 , i.e., 𝑐𝑡 =
∑𝐾
𝑘=1𝑉

𝑡 [𝑘, :] ∗M𝑣 [𝑘, :].
Therefore, performing vertical convolution with𝑚 filters on infor-

mation matrix M𝑣 contributes to extract different bit-level feature

interactions in𝑚 different subspaces.

Finally, the results of𝑚 vertical filters are concatenated into a

vector 𝑜𝑣 :

𝑜𝑣 = 𝑐1‖𝑐2‖ · · · ‖𝑐𝑡 ‖ · · · ‖𝑐𝑚 . (6)

Vector-level Feature Interactions. Modeling vector-level fea-

ture interactions is the core of many recommendation models (e.g.,

DeepFM [6]), which exploit a feed-forward neural network on the

embedding vector for fully capturing implicit features. To achieve

this goal, we design horizontal convolution filters to slide along

the type direction on the 2D matrix M𝑣 and interact with all hori-

zontal dimensions. To be specific, 𝑛 horizontal filters are used, i.e.,

𝐻𝑡 ∈ Rℎ×𝑑 , where 1 ≤ 𝑡 ≤ 𝑛 and ℎ ∈ {1, · · · , 𝐾} is the height of a

filter. The 𝑖-th convolution value 𝑐𝑡𝑖 can be represented as:

𝑐𝑡𝑖 = ReLU(M𝑣 [𝑖 : 𝑖 + ℎ − 1, :] � 𝐻𝑡 ) . (7)

Therefore, the convolutional result of filter 𝐻𝑡 is:

𝑐𝑡 = [𝑐𝑡1, 𝑐
𝑡
2, · · · , 𝑐

𝑡
𝑖 , · · · , 𝑐

𝑡
𝐾−ℎ+1] . (8)

Similarly, the results of 𝑛 horizontal filters are concatenated into

a vector 𝑜ℎ , which is shown as:

𝑜ℎ = 𝑐1‖𝑐2‖ · · · ‖𝑐𝑡 ‖ · · · 𝑐𝑛 . (9)

Finally, the bit-level and vector-level feature interactions signals

are concatenated and fed into a full-connected (FC) layer to extract

high-level global interactive features, represented as:

e𝑣 = ReLU(W𝑓 [𝑜𝑣 ‖𝑜ℎ] + b𝑓 ), (10)

whereW𝑓 and b𝑓 are the weight matrix and bias vector.

To sum up, the major advantages of using CNN&FC to model

feature interactions lie in follows: 1) Vertical convolution extracts

local features on each dimension, working as a multi-head feature

extractor to learn multi-aspect bit-level feature interactions. 2) Hor-

izontal convolution interacts with every successive ℎ neighborhood

representations, capturing ℎ-order vector-level feature interactions
among different type representations. 3) FC layer recombines the

multi-granular feature interaction patterns and learn high-level

global interactive features.

4.2.3 High-order Propagation. We group the above two successive

phases (i.e., type-aware neighbor aggregation and information up-

dating) into an information propagation layer. By stacking multiple

information propagation layers, we can explore the higher-order

connectivity inherent in the CTG and obtain expressive node rep-

resentations. Specifically, we stack 𝐿 layers and each node obtains

𝐿 intermediate representations, namely {e1𝑣, e
2
𝑣, ..., e

𝐿
𝑣 }, which inte-

grate different connectivity information.

To integrate different connectivities and make full use of the

process of information propagation, we leverage the layer-wise

concatenation mentioned in JK-Net [30] to generate the final rep-

resentation e𝑣 = e0𝑣 ‖e
1
𝑣 ‖e

2
𝑣 ‖ ...‖e

𝐿
𝑣 . Finally, the predicted score can

be obtained by the inner product of user and item representations,

shown as:

𝑦𝑢𝑖 = e�𝑢 e𝑖 . (11)

4.3 TransTag Regularization (C3)

As is well-known, item attributes and user interests are diverse. For

example, a movie has the attributes of directors, plot, theme, actors,

etc. Moreover, different users chose the same movie for different

reasons, which can be reflected by Figure 4. Form John’s perspective,

he chose movie Transformers due to the consideration of “science
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science fiction

TransformersPeter Mary

Michael Bay
United States robot

outer space
parallel universes

…… ……
……

dinosaur

Aamir Khan

Scarlett Johansson

Figure 4: An example of users’ substantive preference iden-

tification.

fiction” theme, which is different from Mary (for director “Michael

Bay” ). These diverse preferences can be locally connected via the

tags, thus conducing to identify user’s substantive preference over

given certain items. However, these underlying semantics cannot

be well modeled via graph convolution. To capture the semantics

in user-tag-item triplets, identify user’s substantive preference and

solve challenge C3, we propose TransTag regularization function.

TransTag regularization function is ignited by TransE [2], a

widely usedmethod in knowledge graph embedding, which projects

both entities and relations into a latent embedding space. The as-

sumption of TransTag regularization function is that user 𝑢 chose

item 𝑖 from the perspective of tag 𝑡 , which requires the embed-

ding of item e𝑖 to be a nearest neighbor of e𝑢 + e𝑡 distinctly, i.e.,

e𝑢 + e𝑡 ≈ e𝑖 . Hence, for a given triplet in the training assignment

set 𝑎 = 〈𝑢, 𝑡, 𝑖〉 ∈ A𝑡𝑟𝑎𝑖𝑛 , its energy score is formulated as follows:

𝑔(𝑢, 𝑡, 𝑖) = ‖e𝑢 + e𝑡 − e𝑖 ‖2 , (12)

where e𝑢 , e𝑡 , e𝑖 ∈ R𝑑 are the embeddings of user, tag and item

respectively.

To train TransTag regularization function, weminimize amargin-

based pairwise ranking loss over A𝑡𝑟𝑎𝑖𝑛 :

L𝐸 =
∑

〈𝑢,𝑡,𝑖 〉∈A𝑡𝑟𝑎𝑖𝑛, 〈𝑢′,𝑡,𝑖′ 〉∈A′
〈𝑢,𝑡,𝑖〉

ReLU(𝛾 + 𝑔(𝑢, 𝑡, 𝑖) − 𝑔(𝑢 ′, 𝑡, 𝑖 ′)), (13)

where 𝛾 is a margin hyper parameter. Corrupted triplet 〈𝑢 ′, 𝑡, 𝑖 ′〉 is
random sampled from A′

〈𝑢,𝑡,𝑖 〉 , which is constructed by replacing

either the user or item node in 〈𝑢, 𝑡, 𝑖〉. By doing this, tag can be

viewed as a relation linking user and item, revealing user’s substan-

tive preference over certain items. TransTag regularization function

models the nodes on the granularity of annotation triples, working

as a regularizer on the node learning procedure.

4.4 Jointly Training Details

To better perform ranking, we optimize the recommendation task

with the BPR framework [22].

L𝐺 =
∑

(𝑢,𝑖+) ∈P𝑡𝑟𝑎𝑖𝑛,(𝑢,𝑖−) ∈P′
𝑢

− ln sigmoid(𝑦𝑢𝑖+ − 𝑦𝑢𝑖− ), (14)

where P𝑡𝑟𝑎𝑖𝑛 indicates the training set while P′
𝑢 means the unob-

served item set for user 𝑢.
To effectively learn parameters for recommendation as well as

preserve the regularization relationship among annotation triples,

we integrate the recommendation task and the TransTag regulariza-

tion in an end-to-end fashion through a jointly learning framework.

Finally, the total objective function of TGCN is defined as Eq.(15).

L = L𝐸 + L𝐺 + 𝜆‖Θ‖2, (15)

where 𝜆 and Θ is the regularization weight and model parame-

ters, respectively. We optimize L𝐸 and L𝐺 alternatively, where

mini-batch Adam [11] is adopted. Besides, dropout [24] and early

stopping strategy are also applied to avoid over-fitting.

4.5 Discussion

To compare the state-of-the-art graph convolution models from a

macro perspective, we perform the discussion from five technical

dimensions. The comparison results are shown in Table 1.

1) For neighbor sampling, PinSage performs random sampling

and HetGNN uses heterogeneous neighbor sampling based on ran-

dom walk. Considering both efficiency and effectiveness, TGCN

leverages heterogeneous random sampling strategy. 2) Both HGAT

and TGCN employ hierarchical attention for discriminating the im-

portance of neighbors and node types. However, TGCN takes both

central and neighbor nodes as well as the interaction strength (edge

weight) into consideration in Eq.(2), portraying the importance

of neighbors comprehensively. 3) Among the compared models,

only HGAT and HetGNN consider heterogeneous graph model-

ing and perform type-aware neighbor aggregation. 4) Although

NGCF and KGAT model the feature interactions via element-wise

product, they can only perceive coarse-grained global features. In

comparison, TGCN utilizes the CNN to capture multi-granular

feature interactive signals. 5) KGAT employs TransR [17] to regu-

larize the knowledge-based relations. Similarly, TGCN leverages

the TransTag to identify user’s substantive preference over certain

items and regularize tag-based annotation triples.

Table 1: Model comparison: 1) SP - sampling. 2) AM - atten-

tion mechanism. 3) HG - heterogeneous graph. 4) FI - fea-

ture interaction. 5) RL - regularization.

Property PinSage NGCF GAT KGAT HGAT HetGNN TGCN

SP � � � � � � �

AM � � � � � � �

HG � � � � � � �

FI � � � � � � �

RL � � � � � � �

5 EXPERIMENTS

5.1 Experimental Setup

5.1.1 Data Description and Evaluation Protocols. To evaluate the

performance of the proposed TGCN, we conduct comprehensive ex-

periments on three public real-world datasets: MovieLens, Last.Fm

and Delicious, which are all released in HetRec 2011 [4].

• MovieLens is a movie recommendation dataset published

by GroupLens research group1. In this dataset, a list of tag

assignments for interacted movies is bound to each user.

• Last.Fm is an artist recommendation dataset obtained from

online music system Last.Fm2. In this dataset, each user has

a list of tag assignments to artists.

• Delicious dataset is gathered fromDel.icio.us3 system,which

encourages users to tag bookmarks. In this dataset, each user

has a list of tag assignments to web bookmarks.

1http://www.grouplens.org
2http://www.last.fm.com
3http://delicious.com
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For a fair comparison, we adopt the same preprocessing as existing

research [31, 36] to remove infrequent tags that are used less than 5

times in MovieLens and Last.Fm, and 15 times in Delicious respec-

tively. Table 2 summarizes the statistics of these datasets. For each

user, we randomly select 80% of the interacted items as training set

and the remaining 20% as testing set. Assignments associated with

the items in training set are used to construct the CTG.

The top-𝑁 recommendation quality is evaluated by four metrics:

Precision, Recall, Hit Ratio (HR) and Normalized Discounted Cumu-

lative Gain (NDCG) [8], which are generally used in recommender

systems to evaluate the performance of models [28, 29, 31].

Table 2: Datasets statistics.

Dataset #Users #Items #Tags #Assignments

MovieLens 1,651 5,381 1,586 36,728

Last.Fm 1,808 12,212 2,305 175,641

Delicious 1,843 65,877 3,508 339,744

5.1.2 Baselines and Parameter Settings. To demonstrate the effec-

tiveness, we compare our proposed TGCN with feature-based (CFA,

DSPR and DeepFM) and GNN-based (PinSage, NGCF, KGAT and

HGAT) models. All the GNN-based baselines are extended to per-

form representation learning on CTG with tags integrated.

• CFA: CFA uses a sparse autoencoder to obtain latent repre-

sentations of user profiles, on which user-based CF is applied

for recommendation [36].

• DSPR: DSPR leverages MLPs with shared parameters to

process tag-based features for extracting user and item rep-

resentations [31].

• DeepFM: DeepFM combines factorization machines [21]

and deep neural network for feature learning and recom-

mendation [6].

• PinSage: PinSage deploys GraphSage [7] on industrial ap-

plication and obtains node representations via non-spectral

graph convolution [33].

• NGCF: NGCF explicitly encodes the collaborative signal in

the form of high-order connectivities by performing embed-

ding propagation [29].

• KGAT: KGAT, state-of-the-art KG-based model, performs

knowledge-aware attentive graph convolution in knowledge

graph for high-order relation modeling [28].

• HGAT: HGAT, state-of-the-art HG-based model, leverages

a dual-level attention network to aggregate heterogeneous

neighbors from both type and node levels [18].

In parameter settings, we optimize all models with mini-batch

Adam, where the batch size is fixed at 512 and the learning rate is

searched from {0.0001, 0.001, 0.01, 0.05}. The dropout ratio is tuned

in {0.1, 0.2, · · · , 0.9} and the number of neighbors sampled is set

to 25. Besides, the embedding size of nodes and attention factor

is fixed to 64 and 32 respectively, and the embedding size of edge

weights is 10. For TGCN, we set the depth as 3 with tower hidden

dimension 64, 32 and 16 by default. The number of filters in vertical

and horizontal convolution is 32 and 24 (3×8), respectively. The

margin hyper parameter is set to 1 and the normalization coefficient

is tuned in {10−4, 10−3, · · · , 101}.

5.2 Performance Comparison

Table 3 shows the top-𝑁 recommendation performance on all three

datasets, where 𝑁 ∈ {10, 20}. It’s obvious that TGCN consistently

outperforms other methods over all evaluation metrics. Compared

with the tag-aware models (i.e., CFA and DSPR), our model has

made a significant improvement. An obvious phenomenon is that,

as the size of items and users increases, the recommendation perfor-

mance of the feature-based methods decreases markedly compared

with TGCN, which indicates that the existing tag-aware models are

unsuitable for large-scale datasets (e.g., Delicious). The reason is

that the features (tags) for describing large-scale candidate items

and users are insufficient, which is difficult to tackle the issues of

sparsity, ambiguity and redundancy, limiting the performance of

feature-based models fatally. However, GNN-based models lever-

age multi-hop neighbors to provide more contextual semantics,

alleviating these problem and achieving superior results.

Among the GNN-based baselines, NGCF considers the feature

interactions between central node and neighbors, achieving better

performance than PinSage. Besides, HGAT leverages hierarchical

attention to identify the importance of both node types and hetero-

geneous neighbors, obtaining best results onMovielens and Last.Fm.

In comparison, KGAT obtains less satisfactory results because the

special knowledge-based relation modeling and knowledge-aware

attentive mechanism are less applicable to CTG, illustrating the im-

portance of model customization in different scenarios. In contrast,

TGCN utilizes type-aware aggregators to integrate heterogeneous

neighbors in CTG and further employs CNN-based information

updating method to capture multi-granular feature interactions,

learning superior node representations.

5.3 Detailed Study of TGCN

5.3.1 Effect of type-aware neighbor aggregation. To verify the ef-

fect of type-aware neighbor sampling and aggregation strategy,

we design two groups of experiment, whose results are shown in

Table 4, where R is short for Recall and NG is short for NDCG.

To illustrate the validity of heterogeneous neighbor sampling, we

replace it with random sampling used in GraphSage [7] regardless

of the node types, termed it as TGCN-RandomSP. Experimental re-

sults show that heterogeneous random sampling strategy performs

better than random sampling. The main reasons are two folds: 1)

Heterogeneous sampling ensures that all types of neighbors are

obtained at each round of sampling; 2) Sampling a fixed number of

neighbors for each type makes it possible to fully represent some

types of features with fewer nodes.

To further demonstrate the effectiveness of type-aware neighbor

aggregation, we design experiment to aggregate neighbors regard-

less of their node types, termed it as TGCN-w/o HG. Evaluation

results demonstrate that ignoring node types will degrade the rec-

ommendation performance significantly. Therefore, sampling and

aggregating heterogeneous neighbors differently and separately

contributes to capture their intrinsic differences.

5.3.2 Effect of two-layer attention. To investigate the effect of two-

layer attention, we do some ablation study by removing node-level

attention and setting Eq.(2) 𝛼𝑣←𝑗 = 1
|N𝑘

𝑣 |
, termed TGCN-w/o NA;

removing type-level attention and setting Eq.(3) 𝛽𝑘 = 1
𝐾 , termed
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Table 3: Comparison between different models. Boldface denotes the highest score and underline indi-

cates the best result of the baselines

Dataset Metric
Feature-based GNN-based

TGCN Impr.
CFA DSPR DeepFM PinSage NGCF KGAT HGAT

MovieLens

Precion@10 0.0292 0.0410 0.0411 0.0321 0.0348 0.0345 0.0357 0.0423 +2.9%

Precion@20 0.0235 0.0323 0.0327 0.0261 0.0278 0.0272 0.0284 0.0345 +5.5%

Recall@10 0.0422 0.0690 0.0698 0.0564 0.0572 0.0566 0.0782 0.0837 +7.0%

Recall@20 0.0623 0.0914 0.0991 0.0868 0.0937 0.0913 0.1129 0.1207 +6.9%

HR@10 0.1962 0.2359 0.2612 0.2129 0.2264 0.2254 0.2401 0.2672 +2.3%

HR@20 0.2526 0.2860 0.3278 0.2880 0.2943 0.2881 0.3235 0.3361 +2.5%

NDCG@10 0.0813 0.1137 0.1204 0.0932 0.1005 0.1002 0.1102 0.1234 +2.5%

NDCG@20 0.1049 0.1389 0.1518 0.1215 0.1308 0.1272 0.1398 0.1561 +2.8%

Last.Fm

Precion@10 0.0633 0.0610 0.0645 0.0691 0.0772 0.0709 0.0742 0.0831 +7.6%

Precion@20 0.0469 0.0490 0.0501 0.0548 0.0583 0.0572 0.0579 0.0631 +8.2%

Recall@10 0.0973 0.0727 0.0957 0.1101 0.1036 0.1030 0.1107 0.1185 +7.0%

Recall@20 0.1185 0.1144 0.1400 0.1552 0.1533 0.1538 0.1594 0.1716 +7.7%

HR@10 0.3263 0.3363 0.3746 0.4029 0.4020 0.4022 0.4065 0.4275 +5.2%

HR@20 0.4175 0.4366 0.4712 0.4886 0.4913 0.4895 0.4995 0.5268 +5.5%

NDCG@10 0.1583 0.1491 0.1788 0.1928 0.1937 0.1868 0.1945 0.2073 +6.6%

NDCG@20 0.2017 0.1949 0.2233 0.2377 0.2395 0.2343 0.2404 0.2563 +6.6%

Delicous

Precion@10 0.0051 0.0212 0.0090 0.1416 0.1469 0.1288 0.1291 0.1544 +5.1%

Precion@20 0.0036 0.0169 0.0071 0.1027 0.1062 0.0975 0.0959 0.1158 +9.0%

Recall@10 0.0069 0.0219 0.0121 0.1372 0.1470 0.1211 0.1306 0.1504 +2.3%

Recall@20 0.0098 0.0349 0.0175 0.1925 0.2026 0.1810 0.1916 0.2106 +3.9%

HR@10 0.0451 0.1069 0.0783 0.3941 0.4171 0.3947 0.4026 0.4263 +2.1%

HR@20 0.0635 0.1567 0.1104 0.4227 0.4450 0.4302 0.4378 0.4547 +2.2%

NDCG@10 0.0222 0.0510 0.0389 0.2180 0.2232 0.1983 0.2023 0.2282 +2.2%

NDCG@20 0.0270 0.0688 0.0487 0.2657 0.2714 0.2498 0.2570 0.2831 +4.3%

Table 4: Effect of type-aware neighbor aggregation.

Model
MovieLens Last.Fm Delicious

R@10 NG@10 R@10 NG@10 R@10 NG@10

RandomSP 0.0696 0.1064 0.1124 0.2005 0.1457 0.2204

w/o HG 0.0703 0.1073 0.1110 0.1981 0.1419 0.2167

TGCN 0.0837 0.1234 0.1185 0.2073 0.1504 0.2282

Table 5: Effect of two-layer attention.

Model
MovieLens Last.Fm Delicious

R@10 NG@10 R@10 NG@10 R@10 NG@10

w/o NA 0.0755 0.1188 0.1163 0.1996 0.1465 0.2235

w/o CA 0.0721 0.1126 0.1154 0.1982 0.1399 0.2187

w/o A 0.0712 0.1101 0.1137 0.1953 0.1386 0.2178

TGCN 0.0837 0.1234 0.1185 0.2073 0.1504 0.2282

TGCN-w/o CA; and removing both node-level and type-level atten-

tion, termed TGCN-w/o A. Table 5 summarizes the experimental

results. It is obvious that removing either node-level or type-level

attention compromises the expressive ability of model adversely.

Node-level attention takes both node representations and interac-

tion strength into consideration when measuring the importance

of neighbors. Besides, type-level attention re-scales the weights of

type-specific neighborhood representations, distilling conducive

type features adaptively. By combining node-level and type-level

hierarchical attention, TGCN can distinguish the importance of

heterogeneous neighbors in a fine-grained manner.

5.3.3 Effect of convolution updating. To demonstrate the effective-

ness of convolution updating strategy, we perform some compar-

ative experiments. In particular, mean pooling and MLP are two

commonly used updating methods. Accordingly, we propose two

variants TGCN-pooling and TGCN-MLP by replacing the CNN with

mean pooling and MLP, respectively. Besides, we also investigate

the effect of vertical and horizontal convolution separately, namely

TGCN-v-CNN and TGCN-h-CNN. Figure 5 illustrates the Recall@10

experimental results. We can find that, compared with pooling and

MLP updating functions, TGCN achieves the best results. The rea-

son is that TGCN employs both vertical and horizontal convolutions

for capturing bit-level and vector-level feature interactions, thus

obtaining informative node representations.

5.3.4 Effect of TransTag. To verify the effect of TransTag regular-

ization function, we disable the TransTag and term it as TGCN-w/o

RL. Figure 6 shows the performance w.r.t. recall@10 of each epoch

on Movielens and Last.Fm, from which we observe that TransTag

is conducive to boost the recommendation performance in TRS be-

cause the translation assumption acts as a beneficial regularizer for

constraining annotation triplets. By optimizing recommendation
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Figure 5: Effect of convolution updating.

R
ec

al
l@

10

Training runs

TGCN

TGCN-w/o RL

(a) MovieLens

R
ec

al
l@

10

Training runs

TGCN

TGCN-w/o RL

(b) Last.Fm

Figure 6: Effect of TransTag.

Table 6: Effect of information propagation layer numbers.

Model
MovieLens Last.Fm Delicious

R@10 NG@10 R@10 NG@10 R@10 NG@10

TGCN-1 0.0706 0.1128 0.1085 0.1926 0.1431 0.2225

TGCN-2 0.0769 0.1223 0.1128 0.1963 0.1470 0.2254

TGCN-3 0.0837 0.1234 0.1185 0.2073 0.1504 0.2282

TGCN-4 0.0767 0.1204 0.1240 0.2078 0.1564 0.2327

and TransTag in a jointly learning framework, user’s substantive

preference over certain items can be well identified.

5.4 Parameters Sensitivity

5.4.1 Number of Layers. To explore the influence of information

propagation layer numbers on the recommendation performance,

we search the depth 𝐿 of TGCN in the range of {1, 2, 3, 4}. The ex-
perimental results are summarized in Table 6, from which we have

the following observations: 1) Increasing the layers within certain

limits contributes to improve the recommendation performance

substantially. The reason is that stacking more layers helps nodes

to touch the distant multi-hop neighbors, enabling higher-order

connectivities. 2) However, stacking too many layers may make

the neighborhood features tend to be similar and reduce the per-

formance, which is more obvious in some smaller graphs such as

MovieLens dataset.

5.4.2 Number of Samples. To evaluate the impact of the number of

samples, we vary the number in the range of {1, 5, 10, 15, 20, 25, 30}.
Figure 7 plots the effect of samples on Movielens and the similar

results on other datasets are omitted due to the space limitation.

We can observe that increasing neighbor samples can improve the

performance. The reason lies in the introduction of richer features

brought by more neighbors. Considering both recommendation

effect and training efficiency, we set the neighbors sampled to 25.

5.5 Model Complexity

In order to quantitatively analyze the space and time complexity

of our proposed TGCN, we compare the model parameters and

1 5 10 15 20 25 30

R
ec
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l@
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Samples
1 5 10 15 20 25 30

N
D
C
G
@
10

Samples

Figure 7: Effect of the number of samples on Movielens.

Table 7: Complexity Analysis on Delicious dataset

Model Parameters

(×106)

Relative

ratio

Inference

time (s)

Relative

ratio

PinSage ∼4.56 +5.3% ∼5.3 +9.4%

NGCF ∼4.57 +5.1% ∼5.2 +11.5%

HGAT ∼4.56 +5.3% ∼5.9 -1.7%

TGCN ∼4.80 - ∼5.8 -

Table 8: Industrial application study.

Model Recall@10 NDCG@10

DeepFM 0.1940 0.1772

PinSage 0.3390 0.3090

TGCN 0.3606 0.3299

Impr. +6.4% +6.8%

inference time with some GNN-based models. Table 7 reports the

comparison results on Delicious dataset. We can observe that, com-

pared with other models, the increase of TGCN model parameters

is acceptable w.r.t. 5.2% on average. The reason is that the over-

whelming majority of model parameters are concentrated in the

node embeddings and the parameters in the graph convolution are

negligible. As online recommendation services usually have high

requirements on latency, the computational cost during inference

is more important than that of training phase. From Table 7 we

can find that TGCN achieves comparable inference time to other

GNN-based models, indicating the efficiency of our model.

5.6 Industrial Application

To further verify the effectiveness of TGCN, we apply it in the

recommender system of a mainstream App store. We sample and

collect records from the App store to form an industrial dateset,

which is composed of 10,456 users, 30,488 apps as well as 2,472 tags.

For performance comparison, we select two representative mod-

els that are actually applied in our production system as the base-

lines, i.e., feature-based model DeepFM [6] and GNN-based model

PinSage [33]. Table 8 shows the experimental results on our indus-

trial dataset. We can observe that TGCN has better performance

than the best baseline (PinSage) in terms of recall by 6.4% and

NDCG by 6.8%. As another point, DeepFM performs much worse

than PinSage, which suggests that applying feature-based models

directly in the tag-aware recommendation may not lead to superior

performance. It is difficult for the feature-based models to accu-

rately describe large-scale items and users simply by relying on

smaller-scale tags (features), which is similar to the results on the

Delicious dataset in Table 3.
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5.7 Micro-level Analysis

Leveraging the contextual semantics of multi-hop neighbors in CTG

to alleviate the synonymy redundancy problem is a key advantage

of GNN-based models. Therefore, we perform some micro-level

analysis by investigating the embeddings of synonymous tags. We

randomly select five tag pairs with similar semantics and compare

their cosine similarities of the embeddings. Table 9 shows three

different types of tag pairs, namely synonymous tags caused by

individual diversity in writing (e.g., “5 stars” and “5-star”) and ex-

pression (e.g., “kids” and “children”), as well as related tags (e.g.,

“japan” and “tokyo”). We can find that, benefit from the additional

contextual semantics of multi-hop neighbors, GNN-based model

(TGCN) obtains more similar tag embeddings than feature-based

model (DeepFM). Due to the similar neighborhood subgraphs in

CTG, these tag pairs gain more approximate node embeddings,

which is conducive to better depicting users and items.

Table 9: Tag embedding micro-level analysis.

Tag 1 Tag 2 TGCN DeepFM

5 stars 5-star 0.621 0.242

80s 80’s 0.384 0.109

kids children 0.576 0.078

violent brutal 0.683 -0.061

japan tokyo 0.338 0.041

6 CONCLUSION

In this paper, we delve into the issues (i.e., sparsity, ambiguity and

redundancy), that restrict the development of existing feature-based

tag-aware recommendation and construct CTG to alleviate these

issues. To learn superior node representations, we propose a novel

tag-aware recommendation model TGCN for personalized top-𝑁
recommendation. To cope with the heterogeneity of graph nodes,

TGCN employs type-aware neighbor sampling and aggregation

operation to learn the type-specific neighborhood representations.

For effectively modeling multi-granular feature interactions, TGCN

performs vertical and horizontal convolutions on the multi-type

information matrix after attentive type-level information re-scale.

Finally, we propose TransTag regularization function and perform

jointly learning to identify user’s substantive preference accurately.

Extensive experiments demonstrate that TGCN achieves remark-

able performance improvement compared with state-of-the-art

models. Future work includes introducing meta-path for guiding

graph convolution. Besides, we are also interested in exploring a

non-uniform sampling strategy for heterogeneous nodes.

REFERENCES
[1] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2018. Graph convolu-

tional matrix completion. In SIGKDD Workshop on Deep Learning Day.
[2] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-

sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. In NeurIPS. 2787–2795.

[3] Iván Cantador, Alejandro Bellogín, and David Vallet. 2010. Content-based rec-
ommendation in social tagging systems. In RecSys. 237–240.

[4] Ivan Cantador, Peter L Brusilovsky, and Tsvi Kuflik. 2011. Second workshop on
information heterogeneity and fusion in recommender systems (HetRec2011).

[5] Chaochao Chen, Xiaolin Zheng, Yan Wang, Fuxing Hong, Deren Chen, et al. 2016.
Capturing Semantic Correlation for Item Recommendation in Tagging Systems..
In AAAI. 108–114.

[6] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction. In
IJCAI. 1725–1731.

[7] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS. 1024–1034.

[8] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. TOIS 20, 4 (2002), 422–446.

[9] Jason J Jung. 2011. Discovering community of lingual practice for matching
multilingual tags from folksonomies. Comput. J. 55, 3 (2011), 337–346.

[10] Yoon Kim. 2014. Convolutional neural networks for sentence classification. In
EMNLP. 1746–1751.

[11] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. In ICLR.

[12] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. In ICLR.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. In NeurIPS. 1097–1105.

[14] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph
convolutional networks for semi-supervised learning. In AAAI. 1–8.

[15] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. 2018. xdeepfm: Combining explicit and implicit feature inter-
actions for recommender systems. In SIGKDD. 1754–1763.

[16] Nan Liang, Hai-Tao Zheng, Jin-Yuan Chen, Arun Sangaiah, and Cong-Zhi Zhao.
2018. TRSDL: Tag-Aware Recommender System Based on Deep Learning–
Intelligent Computing Systems. Applied Sciences 8, 5 (2018), 799.

[17] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning
entity and relation embeddings for knowledge graph completion. In AAAI. 2181–
2187.

[18] Hu Linmei, Tianchi Yang, Chuan Shi, Houye Ji, and Xiaoli Li. 2019. Heterogeneous
graph attention networks for semi-supervised short text classification. In EMNLP-
IJCNLP. 4823–4832.

[19] Haibo Liu. 2017. Resource recommendation via user tagging behavior analysis.
Cluster Computing (2017), 1–10.

[20] Qiang Liu, Feng Yu, Shu Wu, and Liang Wang. 2015. A convolutional click
prediction model. In CIKM. 1743–1746.

[21] Steffen Rendle. 2010. Factorization machines. In ICDM. 995–1000.
[22] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI. 452–
461.

[23] Andriy Shepitsen, Jonathan Gemmell, Bamshad Mobasher, and Robin Burke.
2008. Personalized recommendation in social tagging systems using hierarchical
clustering. In RecSys. 259–266.

[24] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[25] Florian Strub, Romaric Gaudel, and Jérémie Mary. 2016. Hybrid recommender
system based on autoencoders. In DLRS. 11–16.

[26] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation
via convolutional sequence embedding. InWSDM. 565–573.

[27] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. In ICLR.

[28] XiangWang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. KGAT:
Knowledge Graph Attention Network for Recommendation. In SIGKDD. 950–958.

[29] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural Graph Collaborative Filtering. In SIGIR. 165–174.

[30] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs
with jumping knowledge networks. In ICML.

[31] Zhenghua Xu, Cheng Chen, Thomas Lukasiewicz, Yishu Miao, and Xiangwu
Meng. 2016. Tag-aware personalized recommendation using a deep-semantic
similarity model with negative sampling. In CIKM. 1921–1924.

[32] Zhenghua Xu, Thomas Lukasiewicz, Cheng Chen, Yishu Miao, and Xiangwu
Meng. 2017. Tag-aware personalized recommendation using a hybrid deep model.
In IJCAI. 3196–3202.

[33] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In SIGKDD. 974–983.

[34] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V
Chawla. 2019. Heterogeneous graph neural network. In SIGKDD. 793–803.

[35] Zi-Ke Zhang, Chuang Liu, Yi-Cheng Zhang, and Tao Zhou. 2010. Solving the
cold-start problem in recommender systems with social tags. EPL 92, 2 (2010),
28002.

[36] Yi Zuo, Jiulin Zeng, Maoguo Gong, and Licheng Jiao. 2016. Tag-aware recom-
mender systems based on deep neural networks. Neurocomputing 204 (2016),
51–60.

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

164




