
AutoDebias: Learning to Debias for Recommendation

Jiawei Chen
1∗
, Hande Dong

1∗
, Yang Qiu

1
, Xiangnan He

1†
,

Xin Xin
2
, Liang Chen

3
, Guli Lin

4
, Keping Yang

4
.

1
University of Science and Technology of China,

2
University of Glasgow,

3
Sun Yat-Sen University,

4
Alibaba Group.

{cjwustc@,donghd@mail.,yangqiu@mail.,hexn@}ustc.edu.cn

x.xin.1@research.gla.ac.uk,chenliang6@mail.sysu.edu.cn,{guli.lingl,shaoyao}@taobao.com.

ABSTRACT
Recommender systems rely on user behavior data like ratings and

clicks to build personalization model. However, the collected data

is observational rather than experimental, causing various biases in

the data which significantly affect the learned model. Most existing

work for recommendation debiasing, such as the inverse propensity

scoring and imputation approaches, focuses on one or two specific

biases, lacking the universal capacity that can account for mixed or

even unknown biases in the data.

Towards this research gap, we first analyze the origin of bi-

ases from the perspective of risk discrepancy that represents the

difference between the expectation empirical risk and the true

risk. Remarkably, we derive a general learning framework that

well summarizes most existing debiasing strategies by specifying

some parameters of the general framework. This provides a valu-

able opportunity to develop a universal solution for debiasing,

e.g., by learning the debiasing parameters from data. However,

the training data lacks important signal of how the data is biased

and what the unbiased data looks like. To move this idea forward,

we propose AotoDebias that leverages another (small) set of uni-

form data to optimize the debiasing parameters by solving the

bi-level optimization problem with meta-learning. Through theo-

retical analyses, we derive the generalization bound for AutoDebias

and prove its ability to acquire the appropriate debiasing strategy.

Extensive experiments on two real datasets and a simulated dataset

demonstrated effectiveness of AutoDebias. The code is available at

https://github.com/DongHande/AutoDebias.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Recommendation, Bias, Debias, Meta-learning

∗ Jiawei Chen and Hande Dong contribute equally to the work.

† Xiangnan He is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8037-9/21/07. . . $15.00

https://doi.org/10.1145/3404835.3462919

ACM Reference Format:
Jiawei Chen, Hande Dong, Yang Qiu, Xiangnan He, Xin Xin, Liang Chen,

Guli Lin and Keping Yang. 2021. AutoDebias: Learning to Debias for Rec-

ommendation. In Proceedings of the 44th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (SIGIR ’21), July
11–15, 2021, Virtual Event, Canada. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3404835.3462919

1 INTRODUCTION
Being able to provide personalized suggestions to each user, rec-

ommender systems (RS) have been widely used in countless online

applications. Recent years have witnessed flourishing publications

on recommendation, most of which aim at inventing machine learn-

ing model to fit user behavior data [17, 44, 52]. However, these

models may be deteriorated in real-world RS, as the behavior data

is often full of biases. In practice, the data is observational rather

than experimental, and is often affected by many factors, including

but not limited to self-selection of the user (selection bias) [19, 33],
exposure mechanism of the system (exposure bias) [34, 47], public
opinions (conformity bias) [25, 29] and the display position (position
bias) [22, 23]. These biases make the data deviate from reflecting

user true preference. Hence, blindly fitting data without consider-

ing the data biases would yield unexpected results, e.g., amplifying

the long-tail effect [1] and previous-model bias [28].

Given the wide existence of data biases and their large impact on

the learned model, we cannot emphasize too much the importance

of properly debiasing for practical RS. Existing efforts on recom-

mendation (or learning-to-rank) biases can be divided into three

major categories: 1) data imputation [19, 42], which assigns pseudo-

labels for missing data to reduce variance, 2) inverse propensity

scoring (IPS) [39, 47], a counterfactual technique that reweighs the

collected data for an expectation-unbiased learning, and 3) genera-

tive modeling [27], which assumes the generation process of data

and reduces the biases accordingly. Despite their effectiveness in

some scenarios, we argue that they suffer from two limitations:

• Lacking Universality. These methods are designed for address-

ing one or two biases of a specific scenario, e.g., IPS for selection
bias [39], click model for position bias [12]. Thus, when facing

real data that commonly contains multiple types of biases, these

methods will fall short.

• Lacking Adaptivity. The effectiveness of these methods is guar-

anteed only when the debiasing configurations (e.g., pseudo-
labels, propensity scores, or data-generating process) are prop-

erly specified. However, obtaining such proper configurations is

quite difficult, requiring domain expertise that thoroughly un-

derstands the biases in the data and how they affect the model.

Even worse, the optimal configurations may evolve with time as

ar
X

iv
:2

10
5.

04
17

0v
3

 [
cs

.L
G

]
 1

5
Ju

l 2
02

1

https://github.com/DongHande/AutoDebias
https://doi.org/10.1145/3404835.3462919
https://doi.org/10.1145/3404835.3462919

new users/items/interactions may change the data distribution,

which has been a nightmare for practitioners to manually tune

the configurations continually.

Considering the shortcomings of existing work, we believe it is

essential to develop a universal debiasing solution, which not only

accounts for multiple biases and their combinations, but also frees

human efforts to identify biases and tune the configurations. To

achieve this goal, we first review the common biases and debiasing

strategies, offering two important insights: (1) Although different

biases have different origins and properties, they all can be formu-

lated as the risk discrepancy between the empirical risk and the true

risk, resulting from the inconsistency between the distribution for

which the training data is collected and the one used for unbiased

test; (2) The success of most recent debiasing strategies can be at-

tributed to their specific configurations to offset the discrepancy

for model training. Based on the insights, we propose a general

debiasing framework by reducing the risk discrepancy, which sub-

sumes most debiasing strategies — each strategy can be recovered

by specifying the parameters of the framework. This framework

provides a valuable opportunity to develop a universal debiasing so-

lution for recommendation — we can perform automatic debiasing

by learning the debiasing parameters of the framework.

Now the question lies in how to optimize the debiasing parame-

ters. Obviously, the biased training data lacks important signals of

how the data is biased and what the unbiased data looks like. To

deal with this problem, we propose to leverage another uniform
data to supervise the learning of debiasing parameter. The uniform

data is assumed to be collected by a random logging policy [39],

reflecting user preference in an unbiased way. We make full use

of this important evidence, optimizing the debiasing parameters

by minimizing the loss on the uniform data. Specifically, we for-

mulate the process as a bi-level optimization problem, where the

debiasing parameters serve as the hyper-parameters for learning

the recommender model, and optimize debiasing parameters by

meta-learning technique [14]. We conduct theoretical analyses on

the learning framework, proving that: (1) the optimum learned

under such objective is approximate to the best case where biases

are properly corrected; (2) it is able to learn a satisfactory debiasing

strategy even if it is trained on a small uniform data.

Lastly, in terms of leveraging uniform data for recommendation,

the most relevant work is the recently proposed KDRec [28]. How-

ever, we argue that it does not sufficiently exploit the merits of

uniform data. KDRec trains a separate teacher model on the uni-

form data, and then transfers the model’s knowledge to the normal

training on biased data. Since uniform data is collected at the ex-

pense of degrading user experience, its size is usually rather small.

As such, the model trained on it suffers from high variance, decreas-

ing the effectiveness of KDRec. What’s more, it lacks theoretical

guarantees, and the inherent mechanism of how teacher model

offsets the bias is not entirely understood. Compared to KDRec, our

framework utilizes uniform data in a more theoretically sound way

and yields significant empirical improvements.

In a nutshell, this work makes the following main contributions:

• Unifying various biases from the risk discrepancy perspec-

tive and developing a general debiasing framework that sub-

sumes most debiasing strategies.

Table 1: Notations and Definitions.

Notations Annotations

𝐷𝑇
a biased training set with entries {(𝑢𝑘 , 𝑖𝑘 , 𝑟𝑘)}1≤𝑘≤ |𝐷𝑇 |

collected from user interaction history

𝐷𝑈
a unbiased uniform set with entries {(𝑢𝑙 , 𝑖𝑙 , 𝑟𝑙)}1≤𝑙≤ |𝐷𝑈 |

collected with uniform logging policy

𝑝𝑇 (𝑢, 𝑖, 𝑟) the data distribution for which 𝐷𝑇 collected

𝑝𝑈 (𝑢, 𝑖, 𝑟) the ideal unbiased data distribution

𝑓𝜃 (., .) RS model that maps a user-item pair into the prediction

𝐿𝑇 (𝑓) the empirical risk of 𝑓 on 𝐷𝑇

𝐿(𝑓) the true risk of 𝑓

𝑆1
the subspace ofU × I × R with constraints:

𝑝𝑇 (𝑢, 𝑖, 𝑘) > 0, 𝑝𝑈 (𝑢, 𝑖, 𝑘) > 0

𝑆0
the subspace ofU × I × R with constraints:

𝑝𝑇 (𝑢, 𝑖, 𝑘) = 0, 𝑝𝑈 (𝑢, 𝑖, 𝑘) > 0

• Proposing a newmethod that leverages uniform data to learn

optimal debiasing strategy with theoretical guarantees.

• Conducting experiments on three types of data (explicit and

implicit feedback, and simulated data of list feedback) to

validate the effectiveness of our proposal.

2 PRELIMINARY
In this section, we formulate the recommendation task and review

various biases in it from risk discrepancy perspective.

2.1 Task Formulation
Suppose we have a recommender system with a user setU and an

item set I. Let 𝑢 (or 𝑖) denotes a user (or an item) inU (or I). Let
𝑟 ∈ R denotes the feedback (e.g., rating values, clicks, and retention
time) given by a user to an item. The collected history behavior

data 𝐷𝑇 can be notated as a set of triplets {(𝑢𝑘 , 𝑖𝑘 , 𝑟𝑘)}1≤𝑘≤ |𝐷𝑇 |
generated from an unknown distribution 𝑝𝑇 (𝑢, 𝑖, 𝑟) over user-item-

label space U × I × R. The task of a recommendation system

can be stated as follows: learning a recommendation model from

𝐷𝑇 so that it can capture user preference and make a high-quality

recommendation. Formally, let 𝛿 (., .) denotes the error function

between the prediction and the ground truth label. The goal of

recommendation is to learn a parametric function 𝑓𝜃 : U ×I → R
from the available dataset 𝐷𝑇 to minimize the following true risk:

𝐿(𝑓) = E𝑝𝑈 (𝑢,𝑖,𝑟) [𝛿 (𝑓 (𝑢, 𝑖), 𝑟)], (1)

where 𝑓𝜃 can be implemented by a specific recommendation model

with a learnable parameters 𝜃 . We remark that in this paper we may

simply omit subscript ’𝜃 ’ in the notations for clear presentation.

𝑝𝑈 (𝑢, 𝑖, 𝑟) denotes the ideal unbiased data distribution for model

testing. This distribution can be factorized as the product of the user-

item pair distribution 𝑝𝑈 (𝑢, 𝑖) (often supposed as uniform) and the

factual preference distribution for each user-item pair 𝑝𝑈 (𝑟 |𝑢, 𝑖).
Since the true risk is not accessible, the learning is conducted on

the training set 𝐷𝑇 by optimizing the following empirical risk:

𝐿𝑇 (𝑓) =
1

|𝐷𝑇 |

|𝐷𝑇 |∑︁
𝑘=1

𝛿 (𝑓 (𝑢𝑘 , 𝑖𝑘), 𝑟𝑘) . (2)

If the empirical risk 𝐿𝑇 (𝑓) is an unbiased estimator of the true risk

𝐿(𝑓), i.e., E𝑝𝑇 [𝐿𝑇 (𝑓)] = 𝐿(𝑓), the PAC learning theory [16] states

L

Figure 1: An example of the biased empirical risk.

that the learned model will be approximately optimal if we have

sufficiently large training data.

2.2 Biases in Recommendation
However, as various biases occur in real-world data collection, the

training data distribution 𝑝𝑇 is often inconsistent with the ideal un-

biased distribution 𝑝𝑈 . Training data only gives a skewed snapshot

of user preference, making the recommendation model sink into

sub-optimal result. Figure 1 illustrates this phenomenon. The red

curve denotes the true risk function, while the blue curve denotes

the expectation of the biased empirical risk function E𝑝𝑇 [𝐿𝑇 (𝑓)].
As the two risks are expected over different distribution, they will

behave rather differently even in their optimum (i.e., 𝑓 ∗ versus 𝑓 𝑇).
It means that even if a sufficiently large training set is provided and

the model arrives at empirical optimal point 𝑓 𝑇 , there still exists a

gap Δ𝐿 between the optimum 𝐿(𝑓 ∗) and the empirical one 𝐿(𝑓 𝑇).
Above analysis reveals the impact of bias on recommendation: bias

will incur the discrepancy between the true risk and the expected

empirical risk. Blindly fitting a recommendation model without

considering the risk discrepancy will result in inferior performance.

Recent work has identified various biases in recommendation. In

this subsection, we will review these biases from risk discrepancy

perspective to help the readers to better understand their properties

and negative effect. We refer to [5] and categorize data biases into

the following four classes:

Selection bias happens as users are free to choose which items
to rate, so that the observed ratings are not a representative sample
of all ratings [5]. Selection bias can be easily understood from the

risk discrepancy perspective — it skews the user-item pair distribu-

tion 𝑝𝑇 (𝑢, 𝑖) from the ideal uniform one 𝑝𝑈 (𝑢, 𝑖). Typically, 𝑝𝑇 (𝑢, 𝑖)
inclines to the pairs with high rating values. Learning a recommen-

dation model under such biased data will easily overestimate the

preferences of users to items.

Conformity bias happens as users tend to behave similarly to the
others in a group, even if doing so goes against their own judgment [5].
Conformity bias distorts label distribution 𝑝𝑇 (𝑟 |𝑢, 𝑖) in conformity

to the public opinions, making the feedback do not always signify

user true preference, i.e., 𝑝𝑇 (𝑟 |𝑢, 𝑖) ≠ 𝑝𝑈 (𝑟 |𝑢, 𝑖).
Exposure bias happens in implicit feedback data as users are

only exposed to a part of specific items [5]. It would be difficult to

understand exposure bias from the above definition, but straight-

forward from risk discrepancy perspective. On the one hand, users

generate behaviors on exposed items, making the observed user-

item distribution 𝑝𝑇 (𝑢, 𝑖) deviate from the ideal one 𝑝𝑈 (𝑢, 𝑖). On
the other hand, implicit feedback data only has positive feedback

observed 𝑝𝑇 (𝑟 = 1|𝑢, 𝑖) = 1. Such positive-only data will cause

ambiguity in the interpretation of unobserved interactions — they

may caused by non-exposure or by dislike.

𝑓்𝑓∗

𝐿ሺ𝑓ሻ 𝐸ሾ𝐿்ሺ𝑓ሻሿ
L

: Training data
: Imputed data

0 :{(, ,) : (, ,) 0, (, ,) 0}U TS u i r p u i r p u i r

1 :{(, ,) : (, ,) 0, (, ,) 0}U TS u i r p u i r p u i r

1S

0S

Figure 2: An illustration of the fact that training data distri-
bution only covers part of ideal data distribution. We need
impute pseudo-data (marked as diamond) to the blank re-
gion 𝑆0, where the mark size reflects their weights.

Position bias happens as users tend to interact with items in
higher position of the recommendation list [5]. Under position bias,

training data distribution 𝑝𝑇 (𝑢, 𝑖, 𝑟) will be sensitive to the item

display position and fail to reflect user preference faithfully. On the

one hand, the ranking position will affect the chance of the item

exposure to the user [34], i.e., 𝑝𝑇 (𝑢, 𝑖) ≠ 𝑝𝑈 (𝑢, 𝑖). On the other hand,
as users often trust the recommendation system, their judgments

also will be affected by the position, i.e., 𝑝𝑇 (𝑟 |𝑢, 𝑖) ≠ 𝑝𝑈 (𝑟 |𝑢, 𝑖).
Generally speaking, above biases can be summarized as a type of

risk discrepancy — they cause training data distribution 𝑝𝑇 (𝑢, 𝑖, 𝑟)
deviate from the ideal unbiased one 𝑝𝑈 (𝑢, 𝑖, 𝑟). This insight moti-

vates us to develop a powerful framework that directly conquers

the risk discrepancy, enabling the elimination of the mixture of

above biases or even unknown biases in the data.

3 A GENERAL DEBIASING FRAMEWORK
In this section, we provide a general debiasing framework that can

account for various kinds of biases in recommendation data. We

then discuss how it subsumes most existing debiasing strategies.

3.1 Debiasing Empirical Risk
The analyses presented in Section 2.2 show that various biases

account for the risk discrepancy. For unbiased learning, we need to

re-design the empirical risk function so that its expectation under

biased training distribution is consistent with the true risk. By

comparing 𝐿(𝑓) with E𝑝𝑇 [𝐿𝑇 (𝑓)], we can see that the discrepancy

origins from the data distribution, where the effect of each data

has been skewed in empirical risk. To deal with it, we can re-weigh

training data and obtain a reweighted empirical risk function:

𝐿𝑇 (𝑓 |𝑤 (1)) =
1

|𝐷𝑇 |

|𝐷𝑇 |∑︁
𝑘=1

𝑤
(1)
𝑘

𝐿(𝑓 (𝑢𝑘 , 𝑖𝑘), 𝑟𝑘) . (3)

When the parameter𝑤 (1) is properly specified, i.e.,𝑤 (1)
𝑘

=
𝑝𝑈 (𝑢𝑘 ,𝑖𝑘 ,𝑟𝑘)
𝑝𝑇 (𝑢𝑘 ,𝑖𝑘 ,𝑟𝑘) ,

the skewness of each sampled training data is corrected. Such em-

pirical risk 𝐿𝑇 (𝑓 |𝑤 (1)) seems be an unbiased estimation of the true

risk as:

𝐸𝑝𝑇 [𝐿𝑇 (𝑓 |𝑤 (1))] =
∑︁

(𝑢,𝑖,𝑟) ∈𝑆1
𝑝𝑈 (𝑢, 𝑖, 𝑟)𝛿 (𝑓 (𝑢, 𝑖), 𝑟),

(4)

where 𝑆1 denotes the user-item-label subspace satisfying 𝑝𝑇 (𝑢, 𝑖, 𝑟) >
0, 𝑝𝑈 (𝑢, 𝑖, 𝑟) > 0, i.e., 𝑆1 ≡ {(𝑢, 𝑖, 𝑟) ∈ U × I × R : 𝑝𝑇 (𝑢, 𝑖, 𝑟) >
0, 𝑝𝑈 (𝑢, 𝑖, 𝑟) > 0}. However, the equivalence of E𝑝𝑇 [𝐿𝑇 (𝑓 |𝑤 (1))]

with 𝐿(𝑓) is actually not held. As illustrated in Figure 2, the training
data distribution 𝑝𝑇 only covers a part of regions (i.e., 𝑆1) of the
support of 𝑝𝑈 , while does not have probability in other regions

(𝑆0 ≡ {(𝑢, 𝑖, 𝑟) ∈ 𝑈 × 𝐼 × 𝑅 : 𝑝𝑇 (𝑢, 𝑖, 𝑘) = 0, 𝑝𝑈 (𝑢, 𝑖, 𝑘) > 0}). It
means that even if a sufficiently large training data is available,

it still provides partial user-item pairs only, while leaves the rest

blank. Learning on 𝑆1 only will suffer especially when 𝑆0 and 𝑆1
exhibit different patterns. This situation is common in practice: the

system tends to display popular items [24], while a considerable

number of unpopular items have little chance to be exposed. To

deal with this problem, we need to impute pseudo-data to the blank

region. In fact, the equivalent transformation of 𝐿(𝑓) is:

𝐿(𝑓) =
∑︁

𝑢∈U,𝑖∈I,𝑟 ∈R
𝑝𝑈 (𝑢, 𝑖, 𝑟)𝛿 (𝑓 (𝑢, 𝑖), 𝑟)

=
∑︁

(𝑢,𝑖,𝑟) ∈𝑆1
𝑝𝑈 (𝑢, 𝑖, 𝑟)𝛿 (𝑓 (𝑢, 𝑖), 𝑟) +

∑︁
(𝑢,𝑖,𝑟) ∈𝑆0

𝑝𝑈 (𝑢, 𝑖, 𝑟)𝛿 (𝑓 (𝑢, 𝑖), 𝑟)

= 𝐸𝑝𝑇 [
1

|𝐷𝑇 |

|𝐷𝑇 |∑︁
𝑘=1

𝑤
(1)
𝑘

𝛿 (𝑓 (𝑢𝑘 , 𝑖𝑘), 𝑟𝑘)] +
∑︁

𝑢∈U,𝑖∈I
𝑤
(2)
𝑢𝑖

𝛿 (𝑓 (𝑢, 𝑖),𝑚𝑢𝑖).

(5)

The last equation holds when the parameters 𝜙 ≡ {𝑤 (1) ,𝑤 (2) ,𝑚}
are set as:

𝑤
(1)
𝑘

=
𝑝𝑈 (𝑢𝑘 , 𝑖𝑘 , 𝑟𝑘)
𝑝𝑇 (𝑢𝑘 , 𝑖𝑘 , 𝑟𝑘)

𝑤
(2)
𝑢𝑖

=
∑︁
𝑟 ∈R

𝑝𝑈 (𝑢, 𝑖, 𝑟)I[𝑝𝑇 (𝑢, 𝑖, 𝑟) = 0]

𝑚𝑢𝑖 = 𝐸𝑝𝑈 (𝑟 |𝑢,𝑖) [𝑟I[𝑝𝑇 (𝑢, 𝑖, 𝑟) = 0]],

(6)

where I[.] denotes indicator function. Here we absorb the expec-
tation over 𝛿 (., .) into the pseudo-label, i.e., E[𝛿 (., .)] = 𝛿 (.,E[.]).
It holds for many commonly-used loss functions, such as L2, L1

and cross-entropy. Thus, we define the following empirical risk

function as:

𝐿𝑇 (𝑓 |𝜙) =
1

|𝐷𝑇 |

|𝐷𝑇 |∑︁
𝑘=1

𝑤
(1)
𝑘

𝛿 (𝑓 (𝑢𝑘 , 𝑖𝑘), 𝑟𝑘) +
∑︁

𝑢∈U,𝑖∈I
𝑤
(2)
𝑢𝑖

𝛿 (𝑓 (𝑢, 𝑖),𝑚𝑢𝑖),

(7)

which is an unbiased estimator of the true risk when the parameters

are properly specified. We remark that there may exist multiple

solutions of𝜙 but at least one (i.e., Equation (6)) that makes equation

𝐿𝑇 (𝑓 |𝜙) = 𝐿(𝑓) hold. This generic empirical risk function provides

a valuable opportunity to develop a universal solution — achieving

automatic debiasing by learning the debiasing parameters 𝜙 .

3.2 Link to Related Work
To show the university of our framework, we review representative

debiasing strategies and discuss how the framework subsumes

them.

Selection bias. Existing methods are mainly three types:

(1) Inverse Propensity Score (IPS) [39] reweighs the collected

data for an unbiased learning, defining the empirical risk as:

L̂𝐼𝑃𝑆 (𝑓) =
1

|U||I|

|𝐷𝑇 |∑︁
𝑘=1

1

𝑞𝑢𝑘𝑖𝑘
𝛿 (𝑓 (𝑢𝑘 , 𝑖𝑘), 𝑟𝑘), (8)

where 𝑞𝑢𝑘𝑖𝑘 is defined as propensity, which estimates the probabil-

ity of the data to be observed. The framework recovers it by setting

𝑤
(1)
𝑘

=
|𝐷𝑇 |

𝑞𝑢𝑘𝑖𝑘 |U | |I |
,𝑤
(2)
𝑘

= 0.

(2) Data Imputation [19] assigns pseudo-labels for missing data

and optimizes the following risk function:

𝐿𝐼𝑀 (𝑓) =
1

|U||I| (
|𝐷𝑇 |∑︁
𝑘=1

𝛿 (𝑓 (𝑢𝑘 , 𝑖𝑘), 𝑟𝑘) +
∑︁

𝑢∈U,𝑖∈I
𝜆𝛿 (𝑓 (𝑢, 𝑖),𝑚𝑢𝑖), (9)

where𝑚𝑢𝑖 denotes the imputed labels which can be specified heuris-

tically [21] or inferred by a dedicated model [7, 32, 37]. 𝜆 is to con-

trol the contribution of the imputed data. It is a special case of our

framework if we set𝑤
(1)
𝑘

=
|𝐷𝑇 |
|U | |I | ,𝑤

(2)
𝑢𝑖

= 𝜆
|U | |I | .

(3) Doubly Robust [48] combines the above models for more

robustness — the capability to remain unbiased if either the imputed

data or propensities are accurate. It optimizes:

𝐿𝐷𝑅 (𝑓) =
1

|U||I|
∑︁

𝑢∈ |U |,𝑖∈ |I |

(
𝛿 (𝑓 (𝑢, 𝑖),𝑚𝑢𝑖) +

𝑂𝑢𝑖𝑑𝑢𝑖

𝑞𝑢𝑖

)
, (10)

where 𝑑𝑢𝑖 = 𝛿 (𝑓 (𝑢, 𝑖), 𝑟𝑜
𝑢𝑖
) − 𝛿 (𝑓 (𝑢, 𝑖), 𝑟 𝑖

𝑢𝑖
) denotes the difference

between the predicted error and imputed error. 𝑟𝑜
𝑢𝑖

denotes the

observed rating values. 𝑂𝑢𝑖 denotes whether the interaction of

(𝑢, 𝑖) is observed. Our framework can recover this one by setting

𝑤
(1)
𝑘

=
|𝐷𝑇 |

𝑞𝑢𝑘𝑖𝑘 |U | |I |
,𝑤
(2)
𝑢𝑖

= 1
|U | |I | −

𝑂𝑢𝑖

𝑞𝑢𝑖 |U | |I | .

Conformity bias. The conformity effect can be offset by optimiz-

ing [29, 31]:

𝐿𝑂𝐹𝐹 (𝑓) =
1

|𝐷𝑇 |

|𝐷𝑇 |∑︁
𝑘=1

(𝛼𝑟𝑘 + (1 − 𝛼)𝑏𝑢𝑘𝑖𝑘 − 𝑓 (𝑢𝑘 , 𝑖𝑘))2, (11)

where 𝑏𝑢𝑘𝑖𝑘 denotes the introduced bias term, which can be speci-

fied as the average rating over all users[29] or social friends [31]. 𝛼

controls the effect of conformity. Our framework subsumes it by

setting𝑤
(1)
𝑘

= 1,𝑤
(2)
𝑢𝑖

= 𝑂𝑢𝑖 (1 − 𝜆),𝑚𝑢𝑖 = −𝑏𝑢𝑖 .

Exposure bias. Existing methods are mainly two types:

(1) Negative Weighting, treats unobserved interactions as nega-

tive and down-weighs their contributions [21]:

𝐿𝑁𝑊 (𝑓) =
1

|𝐷𝑇 |

|𝐷𝑇 |∑︁
𝑘=1

𝛿 (𝑓 (𝑢𝑘 , 𝑖𝑘), 𝑟𝑘) +
∑︁

(𝑢,𝑖) ∈U×I:𝑂𝑢𝑖=0

𝑎𝑢𝑖𝛿 (𝑓 (𝑢, 𝑖), 0), (12)

where parameter 𝑎𝑢𝑖 indicates how likely the item is exposed to a

user, which can be specified heuristically [21] or by an exposure

model [6, 9, 27]. We can recover this method by setting𝑤
(1)
𝑘

= 1,

𝑤
(2)
𝑢𝑖

= 𝑎𝑢𝑖 (1 −𝑂𝑢𝑖),𝑚𝑢𝑖 = 0.
(2) IPS Variant, reweighs observed data and imputes missing

data [38]:

𝐿𝐼𝑃𝑆𝑉 (𝑓) =
|𝐷𝑇 |∑︁
𝑘=1

1

𝑞𝑢𝑘𝑖𝑘
𝛿 (𝑓 (𝑢𝑘 , 𝑖𝑘), 𝑟𝑘) +

∑︁
𝑢∈U,𝑖∈I

(1 − 𝑂𝑢𝑖

𝑞𝑢𝑖
)𝛿 (𝑓 (𝑢, 𝑖), 0) .

(13)

We can recover it by setting𝑤
(1)
𝑘

=
|𝐷𝑇 |

𝑞𝑢𝑘𝑖𝑘 |U | |I |
,𝑤
(2)
𝑢𝑖

= 1
|U | |I | −

𝑂𝑢𝑖

𝑞𝑢𝑖 |U | |I | ,𝑚𝑢𝑖 = 0. It is worth mentioning that the unbiasedness of

Variant IPS conditions on that the training distribution 𝑝𝑇 covers

the whole support of 𝑝𝑈 , however it seldom holds in practice.

Position bias.Themost popular strategy is IPS [3], which reweighs

the collected data with a position-aware score 𝑞𝑡𝑘 :

𝐿𝐼𝑃𝑆 (𝑓) =
1

|𝐷𝑇 |

|𝐷𝑇 |∑︁
𝑘=1

𝛿 (𝑓 (𝑢𝑘 , 𝑖𝑘), 𝑟𝑘)
𝑞𝑡𝑘

. (14)

It can be recovered by setting𝑤
(1)
𝑘

= 1
𝑞𝑡𝑘

,𝑤
(2)
𝑢𝑖

= 0.

4 AUTODEBIAS ALGORITHM
We now consider how to optimize the aforementioned framework.

Since the training data lacks important signals of how the data is

biased and what the unbiased data looks like, it is impossible to

learn proper debiasing parameters from such data. To deal with this

problem, another uniform data 𝐷𝑈 is introduced to supervise the

learning of debiasing parameters. The uniform data contains a list

of triplets {(𝑢𝑙 , 𝑖𝑙 , 𝑟𝑙)}1≤𝑙≤ |𝐷𝑈 | , which is assumed to be collected

by a random logging policy, providing a gold standard evidence

on the unbiased recommendation performance. We make full use

of this evidence and optimize 𝜙 towards better performance on

uniform data. Specifically, the learning process can be formulated

as a meta learning process with:

Base learner : The base recommendation model is optimized on

the training data with current debiasing parameters 𝜙 :

𝜃∗ (𝜙) = argmin
𝜃

𝐿𝑇 (𝑓𝜃 |𝜙) . (15)

where debiasing parameters 𝜙 can be seen as the hyper-parameters

of the base learner.

Meta leaner: Given the learned base recommendation model

𝜃∗ (𝜙) from training data with the hyper-parameters 𝜙 , 𝜙 is opti-

mized towards better recommendation performance on uniform

data:

𝜙∗ = argmin
𝜙

1

|𝐷𝑈 |

|𝐷𝑈 |∑︁
𝑙=1

𝛿 (𝑓𝜃 ∗ (𝜙) (𝑢𝑙 , 𝑖𝑙), 𝑟𝑙) . (16)

For better description, the empirical risk on uniform data is marked

as 𝐿𝑈 (𝑓𝜃), i.e., 𝐿𝑈 (𝑓𝜃) = 1
|𝐷𝑈 |

∑ |𝐷𝑈 |
𝑙=1

𝛿 (𝑓𝜃 (𝑢𝑙 , 𝑖𝑙), 𝑟𝑙).
As the uniform data is often collected in a small scale, directly

learning all parameters in 𝜙 from it will incur over-fitting. To deal

with this problem, 𝜙 can be re-parameterized with a concise meta
model. This treatment can reduce the number of parameters and

encode useful information (e.g., user id, observed feedback) into

debiasing. In this paper, we simply choose a linear model for imple-

mentation as:

𝑤
(1)
𝑘

= exp(𝜑𝑇1 [x𝑢𝑘 ◦ x𝑖𝑘 ◦ e𝑟𝑘])

𝑤
(2)
𝑢𝑖

= exp(𝜑𝑇2 [x𝑢 ◦ x𝑖 ◦ e𝑂𝑢𝑖
])

𝑚𝑢𝑖 = 𝜎 (𝜑𝑇3 [e𝑟𝑢𝑖 ◦ e𝑂𝑢𝑖
]),

(17)

where x𝑢 and x𝑖 denote the feature vectors (e.g., one-hot vector of
its id) of user𝑢 and item 𝑖 , respectively; e𝑟 , e𝑂𝑢𝑖

are one-hot vectors

of 𝑟 and 𝑂𝑢𝑖 ; the mark ◦ denotes the concatenation operation; 𝜑 ≡
{𝜑1, 𝜑2, 𝜑3} are surrogate parameters to be learned; 𝜎 (.) denotes
the activated function controlling the scale of the imputation values,

e.g., 𝑡𝑎𝑛ℎ(·). One might concern that modeling 𝜙 with a meta model

Figure 3: The working flow of AutoDebias, consists of three
steps: (1) tentatively updating 𝜃 to 𝜃 ′ on the training data 𝐷𝑇

with current 𝜙 (black arrows); (2) updating 𝜙 based on 𝜃 ′ on
the uniform data (blue arrows); (3) actually updating 𝜃 with
the updated 𝜙 (black arrows).

potentially induce inductive bias, restricting the flexibility of 𝜙 and

making it fail to arrive at the global optimum. In fact, our framework

is relatively robust to such inductive bias, which has been validated

in Section 5.

Model learning.Note that obtaining optimal𝜙∗ involves nested
loops of optimization — updating 𝜙 a step forward requires a loop

of full training of 𝜃 , which is expensive. To deal with this problem,

we consider to update 𝜃 and 𝜙 alternately in a loop. That is, for each

training iteration, wemake a tentative updating of recommendation

model with current 𝜙 and inspect its performance on the uniform

data. The loss on uniform data will give feedback signal to update

meta model. To be exact, as illustrated in Figure 3, we perform the

following training procedure in each iteration:

• Assumed update of 𝜃 .As the black arrows in Figure 3, we make

an assumed updating of 𝜃 :

𝜃 ′(𝜙) = 𝜃 − 𝜂1∇𝜃𝐿𝑇 (𝑓𝜃 |𝜙), (18)

where we update 𝜃 using gradient descent with learning rate 𝜂1 .

• Update of 𝜙 (𝜑). As the blue arrows shown in figure 3, we test

𝜃 ′(𝜙) on the uniform data with 𝐿𝑈 . The loss function gives a

feedback signal (gradient) to update the meta model 𝜑 :

𝜑 ← 𝜑 − 𝜂2∇𝜑𝐿𝑈 (𝑓𝜃 ′ (𝜙)) . (19)

The gradient can be calculated by using the back-propagation

along the chain 𝐿𝑈 (𝑓𝜃 ′ (𝜙)) → 𝜃 ′(𝜙) → ∇𝜃𝐿𝑇 (𝑓𝜃 |𝜙)) → 𝜙 → 𝜑 .

• Update of 𝜃 . Given the updated 𝜙 , we update 𝜃 actually:

𝜃 ← 𝜃 − 𝜂1∇𝜃𝐿𝑇 (𝑓𝜃 |𝜙)) . (20)

While this alternative optimization strategy is not guaranteed

to find the global optimum, it empirically works well for bi-level

optimization problem [14].

5 THEORETICAL ANALYSIS
In this section, we conduct theoretical analyses to answer the fol-

lowing questions: (1) Can AutoDebias acquire the optimal 𝜙 making

𝐸𝑝𝑇 [𝐿𝑇 (𝑓)] consistent with 𝐿(𝑓)? (2) How does inductive bias in

meta model affect recommendation performance?

Addressing question (1). We first give some notations. Let

Φ and F denote the hypothesis space of the meta model and the

recommendation model; 𝑓 ∗ denotes the optimum function that

minimizes 𝐿(𝑓); 𝑓 (𝜙) denotes empirical optimum under specific

𝜙 by optimizing i.e., 𝑓 (𝜙) = argmin𝑓 ∈F𝐿𝑇 (𝑓 |𝜙); 𝜙∗, the optimal

debiasing parameters making 𝐸𝑝𝑇 [𝐿𝑇 (𝑓 |𝜙∗)] = 𝐸 [𝐿(𝑓)] hold, is
supposed to be contained inΦ in this question, then the general case

will be discussed in next question. 𝜙𝑜 denotes surrogate optimum

from Φ that minimizes 𝜙𝑜 = argmin𝜙 ∈Φ𝐿(𝑓 (𝜙)); 𝜙 denotes the

empirical 𝜙 from the empirical risk on uniform data 𝐿𝑈 (𝑓 (𝜙)). As
the empirical risk 𝐿𝑇 (𝑓 |𝜙∗) is an unbiased estimation of the true

risk, we have:

Lemma 1. Generalization bound of 𝐿(𝑓 (𝜙∗)). For any finite
hypothesis space of recommendation models F = {𝑓1, 𝑓2, · · · , 𝑓 |F |},
with probability of at least 1−𝜂, we have the following generalization
error bound of the learned model 𝑓 :

𝐿(𝑓 (𝜙∗)) ≤ 𝐿(𝑓 ∗) +

√︄
𝑆𝑤 (1) 𝜌

2

2|𝐷𝑇 |
log

2|F|
𝜂

, (21)

where 𝑆𝑤 (1) denotes mean-square of𝑤 (1) with 𝑆𝑤 (1) =
|𝐷𝑇 |∑
𝑘=1
(𝑤 (1)

𝑘
)
2
.

𝜌 denotes the bound of loss function 𝛿 .

We omit the lemma proof due to the limit space. In fact, the proof

is a variant of the proof of Corollary 4.6 in [40], where we use our

debiasing empirical risk and a more strict Hoeffding inequality. For

convenient,

√︂
𝑆
𝑤 (1) 𝜌

2

2 |𝐷𝑇 | log
2 |F |
𝜂 is marked as 𝜀1.

Note that when the space Φ contains optimum 𝜙∗, the relations
𝐿(𝑓 ∗) ≤ 𝐿(𝑓 (𝜙𝑜)) ≤ 𝐿(𝑓 (𝜙∗)) ≤ 𝐿(𝑓 ∗) + 𝜀1 hold, we have:

Corollary 1. When the meta hypothesis space Φ contains opti-
mum 𝜙∗, with probability of at least 1 − 𝛿 , the differences between
𝐿(𝑓 ∗), 𝐿(𝑓 (𝜙𝑜)), 𝐿(𝑓 (𝜙∗)) are bounded with:
|𝐿(𝑓 ∗) − 𝐿(𝑓 (𝜙𝑜)) | < 𝜀1, |𝐿(𝑓 (𝜙𝑜)) − 𝐿(𝑓 (𝜙∗)) | < 𝜀1 . (22)

This corollary suggests that when the training data is sufficiently

large, the surrogate parameter 𝜙𝑜 is approximately correct, making

the recommendation model 𝑓 trained in an unbiased manner and

finally arrive at the approximate optimum.

Note that 𝐿𝑈 (𝑓 (𝜙)) is an unbiased estimation of 𝐿(𝑓 (𝜙)), similar

to lemma 1, we have:

Lemma 2. For any finite hypothesis space of meta model Φ =

{𝜙1, 𝜙2, · · · , 𝜙 |Φ |}, with probability of at least 1 − 𝜂, we have:

𝐿(𝑓 (𝜙)) ≤ 𝐿(𝑓 (𝜙𝑜)) +

√︄
𝜌2

2|𝐷𝑈 |
log

2|Φ|
𝜂

. (23)

This lemma details the relation of𝜙 and𝜙𝑜 . By combining lemma

2 and corollary 1, we have the following generalization bound of

the framework:

Lemma 3. Generalization error bound of AutoDeBias. For
any recommendation model 𝑓 and meta model 𝜙 with finite hy-
pothesis space F and Φ, when Φ contains 𝜙∗, with probability of at
least 1 − 𝜂, the generalization error of the model that is trained with
AutoDebias, is bounded by:

𝐿(𝑓 (𝜙)) < 𝐿(𝑓 ∗)+

√︄
𝑆𝑤 (1) 𝜌

2

2|𝐷𝑇 |
log

4|F|
𝜂
+

√︄
𝜌2

2|𝐷𝑈 |
log

4|Φ|
𝜂

. (24)

Also, 𝐿(𝑓 (𝜙)) does not deviate from 𝐿(𝑓 (𝜙∗)) more than:

|𝐿(𝑓 (𝜙)) − 𝐿(𝑓 (𝜙∗)) | <

√︄
𝑆𝑤 (1) 𝜌

2

2|𝐷𝑇 |
log

4|F|
𝜂
+

√︄
𝜌2

2|𝐷𝑈 |
log

4|Φ|
𝜂

.

(25)

This lemma proves that when sufficient training data and uni-

form data are provided, AutoDeBias can acquire an almost optimal

debiasing strategy, making the recommendation model arrive at

the approximate optimum.

Addressing question (2). Inductive bias occurs in a small-capacity

meta model, making the hypothesis space Φ do not contain 𝜙∗ and
Equation (22) do not hold accordingly. Nevertheless, we have:

Lemma 4. Generalization error bound of AutoDeBias with
inductive bias. For any recommendation model 𝑓 and meta model
𝜙 with finite hypothesis space F and Φ, the generalization error of the
model that is trained with AutoDebias, is bounded by:

𝐿(𝑓 (𝜙)) < 𝐿(𝑓 ∗)+

√︄
𝑆𝑜
𝑤 (1)

𝜌

2|𝐷𝑇 |
log

4|F|
𝜂
+

√︄
𝜌2

2|𝐷𝑈 |
log

4|Φ|
𝜂

+ (Δ(1) + Δ(2))𝜌 + Δ𝑚𝜌𝑑 ,

(26)

where 𝑆𝑜
𝑤 (1)

denotes the mean-square of the surrogate 𝑤𝑜 (1) in 𝜙𝑜

with 𝑆𝑜
𝑤 (1)

=
|𝐷𝑇 |∑
𝑘=1
(𝑤𝑜 (1)

𝑘
)2; and Δ(1) , Δ(2) , Δ𝑚 denotes the expected

deviation between𝜙𝑜 and𝜙∗ caused by inductive bias in terms of𝑤 (1) ,

𝑤 (2) , 𝑚 respectively, i.e., Δ(1) =
|𝐷𝑇 |∑
𝑘=1

𝑝𝑈 (𝑢𝑘 , 𝑖𝑘 , 𝑟𝑘) |
𝑤∗ (1)

𝑘
−𝑤𝑜 (1)

𝑘

𝑤∗ (1)
𝑘

|,

Δ(2) =
∑

𝑢∈𝑈 ,𝑖∈𝐼
|𝑤∗ (2)

𝑢𝑖
−𝑤𝑜 (2)

𝑢𝑖
|, Δ𝑚 =

∑
𝑢∈𝑈 ,𝑖∈𝐼

𝑤∗ (2)
𝑢𝑖
|𝑚∗

𝑢𝑖
−𝑚𝑜

𝑢𝑖
|;

𝜌𝑑 denotes the bound of the gradient ∇𝛿 (., .).

Proof. Due to the limited space, here we just give brief proof.

For convenience, we mark (Δ(1) +Δ(2)𝜌) +Δ𝑚𝜌𝑑 as 𝜀3. Let 𝐿𝑠 (𝑓 |𝜙)
denote the surrogate risk with parameter 𝜙 , that is, 𝐿𝑠 (𝑓 |𝜙) =

𝐸𝑝𝑇 [𝐿𝑇 (𝑓 |𝜙)]. Naturally, 𝐿𝑠 (𝑓 |𝜙) deviates from the true risk 𝐿(𝑓).
But their difference, which can be calculated from Equation (5), is

bounded by 𝜀3. Let 𝑓
∗ (𝜙) denote the optimum of the surrogate risk

𝐿𝑠 (𝑓 |𝜙) with the parameters 𝜙 . The inequality 𝐿𝑠 (𝑓 ∗ (𝜙𝑜) |𝜙𝑜) <
𝐿(𝑓 ∗) + 𝜀3 holds. Further, note that 𝐿𝑇 (𝑓 |𝜙𝑜) is an unbiased estima-

tion of 𝐿𝑠 (𝑓 |𝜙𝑜). The difference between 𝐿(𝑓 (𝜙𝑜)) and 𝐿𝑠 (𝑓 (𝜙𝑜))
is bounded. Combining these conclusions with the lemma 3, lemma

4 is proofed. □

Lemma 4 tells us that although the inductive bias occurs, the

generalization error is bounded. In fact, constraining the capacity

of the meta model with inductive bias, often can improve model

performance. On the one hand, the size of hypothesis space Φ
is reduced; On the other hand, the surrogate optimum 𝜙𝑜 in the

constraint space Φ often has smaller variance, reducing the mean-

square 𝑆𝑜
𝑤 (1)

and further tightening the bound.

6 EXPERIMENTS
In this section, we conduct experiments to evaluate the perfor-

mance of our proposed AutoDebias. Our experiments are intended

to address the following research questions:

RQ1: Does AutoDebias outperform SOTA debiasing methods?

Table 2: Statistics of the datasets.

Dataset Users Items Training Uniform Validation Test

Yahoo!R3 15,400 1,000 311,704 2,700 2,700 48,600

Coat 290 300 6,960 232 232 4,176

Simulation 500 500 12,500 3,750 3,750 67,500

RQ2: How do different components (i.e., learning of𝑤 (1) ,𝑤 (2) or
𝑚) affect AutoDebias performance?

RQ3: How do learned debaising parameters 𝜙 correct data bias?

RQ4: Is AutoDebias universal to handle various biases?

6.1 Experimental Setup
In order to validate the universality of AutoDebias, our experiments

are on three types of data: explicit feedback, implicit feedback, and

the feedback on recommendation list.

Dataset. For explicit feedback, we refer to [28] and use two pub-
lic datasets (Yahoo!R3 and Coat) for our experiments. Both datasets

contain a set of biased data collecting the normal interactions of

users in the platform, and a small set of unbiased data from stochas-

tic experiment where items are assigned randomly. Following [28],

we regard the biased data as training set 𝐷𝑇 , while split the unbi-

ased data into three parts: 5% for uniform set 𝐷𝑈 to help training,

5% for validation set 𝐷𝑉 to tune the hyper-parameters, and 90%

for test set 𝐷𝑇𝑒 to evaluate the model. The ratings are binarized

with threshold 3. That is, the observed rating value larger than 3 is

labeled as positive (𝑟 = 1), otherwise negative 𝑟 = −1.
To generate implicit feedback data, we also use the aforemen-

tioned datasets, but abandon the negative feedback of the training

data. this treatment is the same as the recent work [38].

We also adopt a synthetic dataset Simulation, which simulates

user feedback on recommendation lists to validate that AutoDebias

can handle the situation when both position bias and selection bias

occur. Here we use synthetic dataset as there is no public dataset

that contains ground-truth of unbiased data for model evaluation.

The simulation process consists of four steps: (1) we follow [45]

to generated the ground-truth preference scores 𝑟𝑢𝑖 of 500 users

on 500 items. For each user, we randomly split their feedback into

two parts: 150 for unbiased data set (𝐷1) and 350 remaining for

simulating biased data (𝐷2). (2) For each user, 25 items are sampled

randomly from 𝐷2 to train a recommendation model𝑀 .𝑀 returns

recommendation lists containing top-25 items for each user, which

induces selection bias in data. (3) We then refer to [15] to simulate

user feedback on recommendation lists, where position bias has

been considered. Specifically, the click is generated with the proba-

bility of𝑚𝑖𝑛(𝑟𝑢,𝑖

2∗𝑝1/2 , 1). The statistics of those datasets is in Table 2.

Evaluationmetrics.We adopt the followingmetrics to evaluate

recommendation performance:

• NLL evaluates the performance of the predictions with:

𝑁𝐿𝐿 = − 1

|𝐷𝑡𝑒 |
∑︁

(𝑢,𝑖,𝑟) ∈𝐷𝑡𝑒

𝑙𝑜𝑔

(
1 + 𝑒−𝑟∗𝑓𝜃 (𝑢,𝑖)

)
, (27)

• AUC evaluates the performance of rankings:

𝐴𝑈𝐶 =

∑
(𝑢,𝑖) ∈𝐷+𝑡𝑒 𝑍𝑢,𝑖 − (|𝐷

+
𝑡𝑒 | + 1) (|𝐷+𝑡𝑒 |)/2

(|𝐷+𝑡𝑒 |) ∗ (|𝐷𝑡𝑒 | − |𝐷+𝑡𝑒 |)
, (28)

where |𝐷+𝑡𝑒 | detotes the number of postive data in 𝐷𝑡𝑒 , 𝑍𝑢,𝑖
denotes the rank position of a positive feedback (𝑢, 𝑖).
• NDCG@kmeasures the quality of recommendation through

discounted importance based on position:

𝐷𝐶𝐺𝑢@𝑘 =
∑︁

(𝑢,𝑖) ∈𝐷𝑡𝑒

I(𝑍𝑢,𝑖 ≤ 𝑘)
𝑙𝑜𝑔(𝑍𝑢,𝑖 + 1)

𝑁𝐷𝐶𝐺@𝑘 =
1

|U|
∑︁
𝑢∈U

𝐷𝐶𝐺𝑢@𝑘

𝐼𝐷𝐶𝐺𝑢@𝑘
,

(29)

where 𝐼𝐷𝐶𝐺𝑢@𝑘 is the ideal 𝐷𝐶𝐺𝑢@𝑘 .

Implementation details.Matrix Factorization (MF) has been

selected as a benchmark recommendation model for experiments,

and it would be straightforward to replace it with more sophisti-

cated models such as Factorization Machine [35], or Neural Net-

work [18]. SGD has been adopted for optimizing base model and

Adam for meta model. Grid search is used to find the best hyper-

parameters based on the performance on validate set. We optimize

the base model with SGD and meta model with Adam. The search

space of learning rate and weight decay are [1e-4, 1e-3, 1e-2, 1e-1].

6.2 Performance Comparison on Explicit
Feedback (RQ1)

Baseline. (1) MF(biased), MF(uniform) and MF(combine): the basic

matrix factorization model that trained on𝐷𝑇 ,𝐷𝑈 , and𝐷𝑇 +𝐷𝑈 , re-

spectively; (2) Inverse propensity score (IPS) [39]: a counterfactual

technique that reweighs the collected data. We follow [39] and cal-

culate the propensity with naive bayes; (3) Doubly robust (DR) [48]:

combining data imputation and inverse propensity score; (4) KD-

Label [28]: the state-of-the-art method that transfers the unbiased

information with a teacher model. We refer to [28] and choose

the best label-based distillation for comparison. (5) CausE [28]:

distilling unbiased information with an extra alignment term.

Performance comparison. Table 3 presents the recommen-

dation performance of the compared methods in terms of three

evaluation metrics. The boldface font denotes the winner in that col-

umn. We have the following observations: (1) Overall, AutoDebias

outperforms all compared methods on all datasets for all metrics.

Especially in the dataset Yahoo!R3, the improvements are rather

impressive — 5.6% and 11.2% in terms of NLL and NDCG@5. This

result validates that our proposed AutoDebias can learn better de-

biasing configurations than compared methods. (2) MF(uniform)

that is directly trained on uniform data performs quite terribly. The

reason is that uniform data is often in a quite small scale. Training

a recommendation model on uniform data will suffer from serious

over-fitting. This phenomenon also affect the performance of KD-

based methods (KD-label and CausE). Thus, they perform worse

than AutoDebias with a certain margin.

To further validate the high efficiency of AutoDebias on utilizing

uniform data, we test these methods with varying size of uniform

data as shown in figure 4. We can find AutoDebias consistently

outperforms compared methods. More impressively, AutoDebias

still perform well even if a quite small scale of uniform data is

provided (e.g., Ratio=1%), while KD-label falls short in this situation

— performs close to or even worse than MF(biased).

Table 3: Performance comparisons on explicit feedback data.
The boldface font denotes the winner in that column.

Method

Yahoo!R3 Coat

NLL AUC NDCG@5 NLL AUC NDCG@5

MF(biased) -0.587 0.727 0.550 -0.539 0.747 0.500

MF(uniform) -0.513 0.573 0.449 -0.623 0.580 0.358

MF(combine) -0.580 0.730 0.554 -0.538 0.750 0.504

IPS -0.448 0.723 0.549 -0.515 0.759 0.509

DR -0.444 0.723 0.552 -0.512 0.765 0.521

CausE -0.579 0.731 0.551 -0.529 0.762 0.500

KD-Label -0.632 0.740 0.580 -0.593 0.748 0.504

AutoDebias -0.419 0.741 0.645 -0.512 0.766 0.522

Figure 4: Performance comparisons with varying uniform
data size. Here we sample different percentages of total un-
biased data as uniform data.

6.3 Ablation Study (RQ2)
We conduct ablation study to explore whether the three components

𝑤 (1) ,𝑤 (2) and𝑚 are all desired to be introduced. Table 4 shows the

performance of the ablated model where different components are

removed. From this table, we can conclude that all the parameters

are important for debiasing. Introducing𝑤 (1) and𝑚 consistently

boost the performance. Despite introducing 𝑤 (2) harms the per-

formance a bit on Coat, it brings an impressive improvement on

Yahoo!R3. It is worth emphasising that even if imputation modular

is removed, AutoDebias-w1 still outperforms IPS. This results vali-

dates the effectiveness of the meta-learning algorithm on finding

the proper𝑤 (1) .

6.4 Exploratory Analysis (RQ3)
To answer question RQ3, we now explore the learned meta param-

eters from the dataset Yahoo!R3. This exploration provides insights

into how AutoDebias corrects data bias.

Exploring imputation values𝑚: Table 5 presents the impu-

tation values for user-item pairs with different kinds of feedback.

We can find the imputation value for the positive user-item pairs

is larger than missing pairs, while the value for missing pairs is

large than negative pair. More interestingly, we can find the opti-

mal imputation value for missing pair is rather small (e.g., -0.913).
This phenomenon is consistent with the finding in [32] that a user

dislikes a random-selected item in a high probability.

Exploring weights𝑤 (1) :Note that𝑤 (1) is implemented with a

linear model while the feature vector consists of three one hot vec-

tors in terms of user id, item id and the feedback. The linear parame-

ter 𝜑1 can be divided into three parts 𝜑1= [𝜑11◦𝜑12◦𝜑13] and𝑤 (1)

can be decomposed as a product of user-dependent weights𝑤
(1)
𝑢 ,

Table 4: Ablation study in terms of NDCG@5.

Method 𝑤 (1) m 𝑤 (2) Yahoo!R3 Coat

MF × × × 0.550 0.500

AutoDebias-w1 ✓ × × 0.573 0.510

AutoDebias-w1m ✓ ✓ × 0.581 0.526

AutoDebias ✓ ✓ ✓ 0.645 0.521

Table 5: The learned parameters𝑚 for different feedback.

Positive (𝑟 = 1) Missing Negative (𝑟 = 1)

-0.992 -0.913 0.227

Table 6: The learned parameters𝑤 (1)𝑟 in different models.

Method 𝑟 = −1 𝑟 = 1

AutoDebias-w1 3.37 1.56

AutoDebias 0.29 4.77

the item-dependent weights𝑤
(1)
𝑖

and the label-dependent weights

𝑤
(1)
𝑟 , i.e.,𝑤 (1)

𝑘
= exp(𝜑𝑇11x𝑢𝑘) exp(𝜑

𝑇
12x𝑖𝑘) exp(𝜑

𝑇
13x𝑟𝑘) = 𝑤

(1)
𝑢𝑘

𝑤
(1)
𝑖𝑘

𝑤
(1)
𝑟𝑘

.

Here we explore the distribution of the learned𝑤
(1)
𝑢 ,𝑤

(1)
𝑖

,𝑤
(1)
𝑟 to

provide the insights.

Table 6 shows the value of learned𝑤
(1)
𝑟 for ablated AutoDebias-

w1 and AutoDebias. We can find that 𝑤
(1)
𝑟 for 𝑟 = −1 is larger

than 𝑤
(1)
𝑟 for 𝑟 = 1 in AutoDebias-w1, while 𝑤

(1)
𝑟 for 𝑟 = −1

is smaller than 𝑤
(1)
𝑟 for 𝑟 = 1 in AutoDebias. This interesting

phenomenon can be explained as following. AutoDebias-w1 that

does not use data imputation, will up-weight the negative instances

to account for such selection bias. For AutoDebias, as it has given

negative imputed labels for missing data, it does not need to address

such under-represented problem and turn to learn other aspects

such as data confidence. This result validates the adaptation of our

AutoDebias.

We also explore the distribution of𝑤
(1)
𝑖

with the item popularity

as presented in Figure 5(a). We can find: (1) The weights decreases

as their popularity increases. This phenomenon is consistent with

our intuition that the popular items are likely to be exposed (aka.
popularity bias) and their feedback is over-represented and need

down-weighing to mitigate bias. (2) The variance of the weights

of the popular items is larger than unpopular. The reason is that

some popular items are high-quality, on which the feedback is

indeed valuable, while the feedback of others may be caused by the

conformity effect and is unreliable. As a result, the weights exhibit

more diverse.

To further validate the superiority of our model on addressing

such popularity bias. We draw the plots of the performance of differ-

ent methods in terms of popular and unpopular items in Figure 5(a).

The popular items are defined as the top 20% items according to

their positive feedback frequency, while the unpopular items are

for the rest. We can find AutoDebias provides more exposure oppor-

tunities to unpopular items, and the improvement mainly comes

from unpopular items. This result validates that AutoDebias can

generate fairer recommendation results.

(a) (b) (c)

Figure 5: (a) The learned𝑤 (1)
𝑖

for each item 𝑖 with its popular-
ity; (b) Recommendation results in terms of popular items;
(c) Recommendation results in terms of unpopular items.

Table 7: The performance on implicit feedback data.

Method

Yahoo!R3-Im Coat-Im

AUC NDCG@5 AUC NDCG@5

WMF 0.635 0.547 0.749 0.521

RI-MF 0.673 0.554 0.696 0.527
AWMF 0.675 0.578 0.614 0.505

AutoDebias 0.730 0.635 0.746 0.527

Table 8: The performance in the list feedback of compared
methods on Simulation dataset.

NLL AUC NDCG@5

MF(biased) -0.712 0.564 0.589

DLA -0.698 0.567 0.593

HeckE -0.688 0.587 0.648

AutoDebias -0.667 0.634 0.707

6.5 Performance Comparison on Implicit and
Feedback on Lists (RQ4)

To validate the universality of AutoDebias, we also conduct experi-

ments on implicit feedback and the feedback on lists.

Implicit feedback.We compare AutoDebias with three SOTA

methods on exposure bias: WMF, RL-MF [38], and AWMF [8]. Ta-

ble 7 shows the performance comparison. As this table shows,

AutoDebias performs much better than others, which validates our

AutoDebias can handle the exposure bias in implicit feedback.

The feedback on recommendation list. In this scenario, we

add position information inmodeling𝑤
(1)
𝑘

, i.e.,𝑤 (1)
𝑘

= exp(𝜑𝑇1 [x𝑢𝑘 ◦
x𝑖𝑘 ◦ e𝑟𝑘 ◦ e𝑝𝑘]). We compare AutoDebias with two SOTA methods:

Dual Learning Algorithm (DLA) [3] which mitigate position bias,

and Heckman Ensemble (HeckE) [34] which mitigates both posi-

tion bias and selection bias by ensemble. Table 8 shows the results.

we can find AutoDebias still outperform compared methods. this

result verifies that AutoDebias can handle various biases, even their

combination.

7 RELATEDWORK
Bias in recommendation. Besides the data bias that has been

detailed in section 2&3, two important biases in recommendation

results have been studied: (1)When a recommendermodel is trained

on a long-tailed data, popular items are recommended even more

frequently than their popularitywouldwarrant [2], raising so-called

popularity bias. The long-tail phenomenon is common in RS data,

and ignoring the popularity bias will incur many issues, e.g., , hurt-
ing user serendipity, making popular items even more popular. To

deal with this problem, [1, 11, 49] introduced regularizers to guide

the model to give more balanced results; [50, 54] disentangled the

effect of user interest and item popularity with causal inference to

address popularity bias. (2) The system systematically and unfairly

discriminates against certain individuals or groups of individuals

in favor others, raising so-called unfairness. Unfairness happens as
different user (or item) groups are usually unequally represented in

data. When training on such unbalanced data, the models are highly

likely to learn these over-represented groups, and potentially dis-

criminates against other under-represented groups [13, 43]. There

are four types of strategies on addressing unfairness, including

re-balancing[41], regularizer[51], adversarial learning [4], causal

inference [26]. We encourage the readers refer to the survey [5] for

more details.

Meta learning in recommendation.Meta learning is an auto-

matic learning algorithms that aims at using metadata to improve

the performance of existing learning algorithms or to learn (induce)

the learning algorithm itself [14, 20, 46]. There is also some work in-

troducing meta learning in RS. For example, [10, 36] leveraged meta

learning to learn a finer-grained regularization parameters; [53]

leveraged meta-learning to guide the re-training of a recommen-

dation model towards better performance; Meta-learning also has

been utilized to address the cold-start problem [30].

8 CONCLUSION AND FUTUREWORK
This paper develops a universal debiasing framework that not only

canwell account for multiple biases and their combinations, but also

frees human efforts to identify biases and tune the configurations.

We first formulate various data biases as a case of risk discrepancy,

and then derive a general learning framework that subsumes most

debiasing strategies. We further propose a meta-learning-based

algorithm to adaptively learn the optimal debiasing configurations

from uniform data. Both theoretical and empirical analyses have

been conducted to validate the effectiveness of our proposal.

One interesting direction for future work is to explore more so-

phisticate meta model, which could capture more complex patterns

and potentially achieve better performance than linear meta model.

Also, note that in real-world biases are usually dynamic rather than

static. it will be valuable to explore how bias evolves with the time

goes by and develop a universal solutions for dynamic biases.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation

of China (U19A2079, 61972372), National Key Research and De-

velopment Program of China (2020AAA0106000), USTC Research

Funds of the Double First-Class Initiative (WK2100000019), and the

Alibaba Group through Alibaba Innovative Research Program.

REFERENCES
[1] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. 2017. Controlling

Popularity Bias in Learning-to-Rank Recommendation. In RecSys. 42–46.
[2] Himan Abdollahpouri and Masoud Mansoury. 2020. Multi-sided exposure bias

in recommendation. arXiv preprint arXiv:2006.15772 (2020).
[3] Qingyao Ai, Keping Bi, Cheng Luo, Jiafeng Guo, and W. Bruce Croft. 2018. Unbi-

ased Learning to Rank with Unbiased Propensity Estimation. In SIGIR. 385–394.

[4] Ghazaleh Beigi, Ahmadreza Mosallanezhad, Ruocheng Guo, Hamidreza Alvari,

Alexander Nou, and Huan Liu. 2020. Privacy-Aware Recommendation with

Private-Attribute Protection using Adversarial Learning. In WSDM. 34–42.

[5] Jiawei Chen, Hande Dong, XiangWang, Fuli Feng, MengWang, and Xiangnan He.

2020. Bias and Debias in Recommender System: A Survey and Future Directions.

arXiv preprint arXiv:2010.03240 (2020).
[6] Jiawei Chen, Yan Feng, Martin Ester, Sheng Zhou, Chun Chen, and Can Wang.

2018. Modeling Users’ Exposure with Social Knowledge Influence and Consump-

tion Influence for Recommendation. In CIKM. 953–962.

[7] Jiawei Chen, Can Wang, Martin Ester, Qihao Shi, Yan Feng, and Chun Chen. 2018.

Social Recommendation with Missing Not at Random Data. In ICDM. 29–38.

[8] Jiawei Chen, Can Wang, Sheng Zhou, Qihao Shi, Jingbang Chen, Yan Feng, and

Chun Chen. 2020. Fast Adaptively Weighted Matrix Factorization for Recom-

mendation with Implicit Feedback. In AAAI. 3470–3477.
[9] Jiawei Chen, Can Wang, Sheng Zhou, Qihao Shi, Yan Feng, and Chun Chen. 2019.

SamWalker: Social Recommendation with Informative Sampling Strategy. In

WWW. 228–239.

[10] Yihong Chen, Bei Chen, Xiangnan He, Chen Gao, Yong Li, Jian-Guang Lou, and

Yue Wang. 2019. 𝜆Opt: Learn to Regularize Recommender Models in Finer Levels.

In KDD. 978–986.
[11] Zhihong Chen, Rong Xiao, Chenliang Li, Gangfeng Ye, Haochuan Sun, and

Hongbo Deng. 2020. ESAM: Discriminative Domain Adaptation with Non-

Displayed Items to Improve Long-Tail Performance. In SIGIR. 579–588.
[12] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. 2008. An experi-

mental comparison of click position-bias models. In WSDM. 87–94.

[13] Michael D. Ekstrand, Mucun Tian, Mohammed R. Imran Kazi, Hoda Mehrpouyan,

and Daniel Kluver. 2018. Exploring author gender in book rating and recommen-

dation. In RecSys. 242–250.
[14] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-

Learning for Fast Adaptation of Deep Networks. In ICML. 1126–1135.
[15] David F. Gleich and Lek-Heng Lim. 2011. Rank aggregation via nuclear norm

minimization. In KDD. 60–68.
[16] David Haussler. 1990. Probably approximately correct learning. University of

California, Santa Cruz, Computer Research Laboratory.

[17] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng

Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network

for Recommendation. In SIGIR. 639–648.
[18] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural Collaborative Filtering. In WWW. 173–182.

[19] José Miguel Hernández-Lobato, Neil Houlsby, and Zoubin Ghahramani. 2014.

Probabilistic Matrix Factorization with Non-random Missing Data. In ICML.
1512–1520.

[20] Sepp Hochreiter, A. Steven Younger, and Peter R. Conwell. 2001. Learning to

Learn Using Gradient Descent. In ICANN. 87–94.
[21] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for

Implicit Feedback Datasets. In ICDM. 263–272.

[22] Thorsten Joachims, Laura A. Granka, Bing Pan, Helene Hembrooke, and Geri

Gay. 2017. Accurately Interpreting Clickthrough Data as Implicit Feedback. In

SIGIR. 4–11.
[23] Thorsten Joachims, Laura A. Granka, Bing Pan, Helene Hembrooke, Filip Radlin-

ski, and Geri Gay. 2007. Evaluating the accuracy of implicit feedback from clicks

and query reformulations in Web search. TOIS 25, 2 (2007), 7.
[24] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. 2014. Cor-

recting Popularity Bias by Enhancing Recommendation Neutrality. In RecSys,
Vol. 1247.

[25] Sanjay Krishnan, Jay Patel, Michael J Franklin, and Ken Goldberg. 2014. A

methodology for learning, analyzing, and mitigating social influence bias in

recommender systems. In RecSys. 137–144.
[26] Matt J. Kusner, Joshua R. Loftus, Chris Russell, and Ricardo Silva. 2017. Counter-

factual Fairness. In NeurIPS. 4066–4076.
[27] Dawen Liang, Laurent Charlin, James McInerney, and David M. Blei. 2016. Mod-

eling User Exposure in Recommendation. In WWW. 951–961.

[28] Dugang Liu, Pengxiang Cheng, Zhenhua Dong, Xiuqiang He, Weike Pan, and

Zhong Ming. 2020. A General Knowledge Distillation Framework for Counter-

factual Recommendation via Uniform Data. In SIGIR. 831–840.
[29] Yiming Liu, Xuezhi Cao, and Yong Yu. 2016. Are You Influenced by Others When

Rating? Improve Rating Prediction by Conformity Modeling. In RecSys. 269–272.
[30] Yuanfu Lu, Yuan Fang, and Chuan Shi. 2020. Meta-learning on heterogeneous

information networks for cold-start recommendation. In KDD. 1563–1573.
[31] Hao Ma, Irwin King, and Michael R. Lyu. 2009. Learning to recommend with

social trust ensemble. In SIGIR. 203–210.
[32] Benjamin M. Marlin and Richard S. Zemel. 2009. Collaborative prediction and

ranking with non-random missing data. In RecSys. 5–12.
[33] Benjamin M. Marlin, Richard S. Zemel, Sam T. Roweis, and Malcolm Slaney. 2007.

Collaborative Filtering and the Missing at Random Assumption. In UAI. 267–275.
[34] Zohreh Ovaisi, Ragib Ahsan, Yifan Zhang, Kathryn Vasilaky, and Elena Zheleva.

2020. Correcting for Selection Bias in Learning-to-rank Systems. In WWW.

1863–1873.

[35] Steffen Rendle. 2012. Factorization machines with libfm. TIST 3, 3 (2012), 57:1–

57:22.

[36] Steffen Rendle. 2012. Learning recommender systems with adaptive regulariza-

tion. In WSDM. 133–142.

[37] Yuta Saito. 2020. Asymmetric Tri-training for Debiasing Missing-Not-At-Random

Explicit Feedback. In SIGIR. 309–318.
[38] Yuta Saito, Suguru Yaginuma, Yuta Nishino, Hayato Sakata, and Kazuhide Nakata.

2020. Unbiased Recommender Learning from Missing-Not-At-Random Implicit

Feedback. In WSDM. 501–509.

[39] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, and

Thorsten Joachims. 2016. Recommendations as Treatments: Debiasing Learning

and Evaluation. In ICML. 1670–1679.
[40] Shai Shalev-Shwartz and Shai Ben-David. 2014. Understanding machine learning:

From theory to algorithms. Cambridge university press.

[41] Ashudeep Singh and Thorsten Joachims. 2018. Fairness of Exposure in Rankings.

In KDD. 2219–2228.
[42] Harald Steck. 2013. Evaluation of recommendations: rating-prediction and rank-

ing. In RecSys. 213–220.
[43] Ana-Andreea Stoica, Christopher J. Riederer, and Augustin Chaintreau. 2018.

Algorithmic Glass Ceiling in Social Networks: The effects of social recommenda-

tions on network diversity. In WWW. 923–932.

[44] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.

2019. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Repre-

sentations from Transformer. In CIKM. 1441–1450.

[45] Wenlong Sun, Sami Khenissi, Olfa Nasraoui, and Patrick Shafto. 2019. Debiasing

the Human-Recommender System Feedback Loop in Collaborative Filtering. In

WWW. 645–651.

[46] Sebastian Thrun and Lorien Y. Pratt (Eds.). 1998. Learning to Learn. Springer.
[47] Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. 2016.

Learning to Rank with Selection Bias in Personal Search. In SIGIR. 115–124.
[48] Xiaojie Wang, Rui Zhang, Yu Sun, and Jianzhong Qi. 2019. Doubly robust joint

learning for recommendation on datamissing not at random. In ICML. 6638–6647.
[49] Jacek Wasilewski and Neil Hurley. 2016. Incorporating Diversity in a Learning

to Rank Recommender System. In FLAIRS. 572–578.
[50] Tianxin Wei, Fuli Feng, Jiawei Chen, Chufeng Shi, Ziwei Wu, Jinfeng Yi, and

Xiangnan He. 2020. Model-Agnostic Counterfactual Reasoning for Eliminating

Popularity Bias in Recommender System. arXiv preprint arXiv:2010.15363 (2020).
[51] Sirui Yao and Bert Huang. 2017. Beyond Parity: Fairness Objectives for Collabo-

rative Filtering. In NeurIPS. 2921–2930.
[52] Fajie Yuan, Xiangnan He, Alexandros Karatzoglou, and Liguang Zhang. 2020.

Parameter-Efficient Transfer from Sequential Behaviors for User Modeling and

Recommendation. In SIGIR. 1469–1478.
[53] Yang Zhang, Fuli Feng, Chenxu Wang, Xiangnan He, Meng Wang, Yan Li, and

Yongdong Zhang. 2020. How to retrain recommender system? A sequential

meta-learning method. In SIGIR. 1479–1488.
[54] Yu Zheng, Chen Gao, Xiang Li, Xiangnan He, Depeng Jin, and Yong Li. 2021.

Disentangling User Interest and Conformity for Recommendation with Causal

Embedding. In WWW.

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Task Formulation
	2.2 Biases in Recommendation

	3 A general debiasing framework
	3.1 Debiasing Empirical Risk
	3.2 Link to Related Work

	4 AutoDebias Algorithm
	5 Theoretical analysis
	6 Experiments
	6.1 Experimental Setup
	6.2 Performance Comparison on Explicit Feedback (RQ1)
	6.3 Ablation Study (RQ2)
	6.4 Exploratory Analysis (RQ3)
	6.5 Performance Comparison on Implicit and Feedback on Lists (RQ4)

	7 Related work
	8 Conclusion and Future work
	Acknowledgments
	References

