
fBGD: Learning Embeddings From Positive Unlabeled Data with BGD

Fajie Yuan,1 Xin Xin,1 Xiangnan He,2 Guibing Guo,3 Weinan Zhang,4
Chua Tat-Seng2 and Joemon M. Jose1

University of Glasgow, UK1, National University of Singapore, Singapore2

Northeastern University, China3, Shanghai Jiao Tong University, China4,

{f.yuan.1,x.xin.1,Joemon.Jose}@research.gla.ac.uk , xiangnanhe@gmail.com
guogb@swc.neu.edu.cn, wnzhang@sjtu.edu.cn, chuats@comp.nus.edu.sg

Abstract

Learning sparse features from only positive and
unlabeled (PU) data is a fundamental task for
problems of several domains, such as natural lan-
guage processing (NLP), computer vision (CV),
information retrieval (IR). Considering the nu-
merous amount of unlabeled data, most prevalent
methods rely on negative sampling (NS) to in-
crease computational efficiency. However, sam-
pling a fraction of unlabeled data as negative for
training may ignore other important examples,
and thus lead to non-optimal prediction perfor-
mance. To address this, we present a fast and
generic batch gradient descent optimizer (fBGD)
to learn from all training examples without sam-
pling. By leveraging sparsity in PU data, we ac-
celerate fBGD by several magnitudes, making
its time complexity the same level as the NS-
based stochastic gradient descent method. Mean-
while, we observe that the standard batch gradi-
ent method suffers from gradient instability is-
sues due to the sparsity property. Driven by a
theoretical analysis for this potential cause, an in-
tuitive solution arises naturally. To verify its effi-
cacy, we perform experiments on multiple tasks
with PU data across domains, and show that
fBGD consistently outperforms NS-based mod-
els on all tasks with comparable efficiency.

1 INTRODUCTION

Learning from only positive and unlabeled (or non-
observed) data, aka PU learning, occurs in numerous do-
mains such as NLP, CV, IR. In these scenarios, the observed
training data usually consists of positive data only. More-
over, the overall training data is typically very sparse, since

only a small fraction of positive examples are observed, and
the non-observed negative examples are of a much larger
scale.

To generalize well on such sparse data, embedding learn-
ing, such as word embedding in NLP (Mikolov et al.,
2013b), image (category) embedding in CV (Weston et al.,
2011), user (item) embedding in IR (Yuan et al., 2016a),
and DNA k-mer embedding in genetic engineering (Ng,
2017), has become a common practice. However, learn-
ing embeddings from PU (or positive-only) data is compu-
tationally expensive, since each observed positive example
needs to be paired with all non-observed negatives.

To learn from large-scale non-observed data, most recent
embedding methods employ negative sampling (NS) and
stochastic gradient descent (SGD) for efficient optimiza-
tion (Mikolov et al., 2013b; Weston et al., 2012; Guo et al.,
2018a,b; Yuan et al., 2016a, 2017). However, the training
time and prediction accuracy are largely determined by the
sampling distribution and size of negative samples. Sam-
pling a fraction of non-observed data as negative for train-
ing may ignore other useful examples, or lead to insuffi-
cient training of them. This is our main motivation in this
work. Moreover, it is known that SGD performs frequent
gradient updates with a high variance, which can cause the
objective function to fluctuate heavily near the optimum
(Ruder, 2016). By contrast, batch gradient descent (BGD)
computes the gradient on all training data for updating a
model parameter. As such, the learning process has the po-
tential to converge to a better optimum. Unfortunately, the
low efficiency caused by the full-batch gradient computa-
tion makes it less applicable to large-scale datasets.

To deal with these issues, we introduce a fast and generic
batch gradient descent algorithm (called fBGD) for learn-
ing various embedding models from positive-only data.
fBGD optimizes a commonly used square loss function
that accounts for all non-observed examples without any
sampling. To ensure the learning efficiency, we acceler-

1 3

7

1 2

3

1

1

1 9

X

Y

(a) Co-occurrence matrix

𝑟 𝑥𝑦

𝑓 ∙ 𝑔 ∙

𝒑𝑥 𝒒𝑦

(b) Embedding function

Figure 1: (a): PU data with (x, y) co-occurrence matrix H. The
grey cells denote no explicitly observed (x, y) examples. (b): Em-
bedding function. f(·) and g(·) are functions to construct the em-
bedding vectors px and qy respectively.

ate fBGD with rigorous mathematical reasoning. Notably,
despite that fBGD computes loss and gradients over all ex-
amples, its actual complexity is comparable with NS-based
SGD methods that utilize only partial examples. Further-
more, we show that standard batch learning are prone to
the gradient exploding and vanishing problem and solve it
by an intuitive way. We provide an intuitive solution after
understanding its potential cause. To summarize, the main
work of this paper is as follows:

• We propose a unified BGD implementation to solve
the sparse feature learning problem from PU data. For
efficiency optimization, we accelerate it by a natural
reformulation of loss and rearrangement for the dot
product. For generality, we identify the dot product
structure for a class of complex embedding models.

• We provide theoretical explanations that the standard
batch gradient learning suffers from gradient instabil-
ity issues when learning embedding models due to
large batched summation of sparse features.

• We employ a general weighting scheme that suits well
for unlabeled examples in various domains, which
not only largely improves the prediction accuracy of
fBGD, but also make efficiency optimization possible.

• fBGD achieves state-of-the-art performance in multi-
ple research fields with comparable costs to NS-based
SGD methods. Insightful comparisons for sampling
based methods have been thoroughly studied. An-
other insightful observation is that many specific mod-
els used in one of these fields are promising to benefit
others by minor (or no) changes. This opens a new
direction of research to bridge these fields.

• We release the source code of fBGD at: https://
github.com/fajieyuan/fBGD.

2 PROBLEM FORMULATION

2.1 LEARNING FROM POSITIVE-ONLY DATA

Assuming we have two sets of examples that are available
for training: the positive set P and an unlabeled set U ,

which is typically non-observed and contains both positive
and negative samples. Each sample in P is an observed
(x, y) pair, where x ∈ X and y ∈ Y . X and Y are the set
of distinct x and y respectively. For a given x, we have a
set of relevant y labelled, denoted by Y +

x , the size of which
is much smaller than that of the non-observed set Y −x . As
shown in Figure 1 (a), we can use a matrix H ∈ R|X|×|Y |
to denote the historical interactions between x and y. The
goal of PU learning is to find a function r̂xy (parameterized
by Θ) that explains a set of observed pairs (x, y), such as
“relevant-or-not” and “like-or-not”.

2.2 EMBEDDING MODELS

Embedding models have been widely adopted in many spe-
cific PU learning tasks. In this work, we focus on optimiz-
ing the embedding functions that can be explicitly or im-
plicitly expressed by a dot product structure, given below.

r̂xy = 〈px,qy〉 =

g∑
d=1

px,dqy,d (1)

where px and qy are compressed embedding vectors with
embedding dimension g. They can be obtained by di-
rectly projecting the ID of row/column into the embed-
ding space (i.e., explicit structure as in Xin et al. (2018)
and He et al. (2016b)), or projecting with other features
of row/column (i.e., implicit stricture as in Rendle and
Freudenthaler (2014); Bayer et al. (2017)). The time com-
plexity of evaluating this equation is O(g). Note that
the implicit dot product structure can describe a variety
of multi-linear models, such as SVDFeature (Chen et al.,
2012) and tensor models (Bailey and Aeron, 2017; Rendle
and Schmidt-Thieme, 2010). Later, we will show how to
construct this dot product structure for some state-of-the-
art embedding models.

2.3 LOSS FUNCTION AND BGD OPTIMIZATION

We propose optimizing the standard regression loss, which
can also be used for classification and ranking tasks. Unlike
Pennington et al. (2014), the optimized loss function should
explicitly account for all unlabeled samples.

J(Θ) =
∑

(x,y)∈P

α+
xy(r+ − r̂xy)

2
+

∑
(x,y)∈U

α−xy(r−−r̂xy)
2

︸ ︷︷ ︸
JM(Θ)

(2)

where JM(Θ) denotes the errors of all unlabeled exam-
ples, α+

xy and α−xy are the weight functions. Eq. (2) can be
minimized by BGD, which computes the gradient of loss
function w.r.t. θ ∈ Θ on the entire (positive and unlabeled)
samples:

θ ← θ − γOθJ(θ) (3)

where γ is the learning rate, and OθJ(θ) is the gradient of
J(Θ) w.r.t. θ, given below:

OθJ(θ) =2
(∑

(x,y)∈P

α+
xy(r+ − r̂xy)Oθ r̂xy︸ ︷︷ ︸
O(|Y +

x |g)

+
∑

(x,y)∈U

α−xy(r−−r̂xy)Oθ r̂xy︸ ︷︷ ︸
O(|Y−x |g)

) (4)

where O(|Y +
x |g) and O(|Y −x |g) are the complexity of gra-

dient computation on positive and unlabeled data.

2.4 EFFICIENCY ISSUES

As can be seen, the second term JM (Θ) in Eq.(2) domi-
nates the computational complexity. This is because com-
puting JM (Θ) in Eq.(2) has almost O(|X||Y |g) time be-
cause |P | � |U |. Similarly, updating a parameter (un-
der the explicit dot product setting), e.g., px,d, by Eq.(4)
is O((|Y −x |)g), or O(|Y |g), because |Y +

x | � |Y −x |. The
total cost by iterating over all px,d in Θ in each iteration
becomes O(|X||Y |g). Clearly, the straight-forward way to
calculate gradients by BGD is generally infeasible, because
|X||Y | can easily reach billion level or even higher.

3 FAST & GENERIC BGD For PU DATA

In this section, we first derive an efficient loss function of
the generic fBGD for PU learning, and show how to extend
it to various embedding models. Then, we design a general
weighting scheme for the unlabeled examples in fBGD.

3.1 EFFICIENT fBGD LOSS

In the above learning setting, the dominant computation is
the minimization of JM (Θ) in Eq.(2) since each x has its
standalone unlabeled set of y, i.e., Y −x . As such, the BGD
algorithm basically needs to iterate through all elements in
Y −x , and repeat the operation for all x ∈ X , which pro-
duces the main cost. To solve the problem, we reformulate
the standard BGD loss according to the set theory1. Natu-
rally, for any PU learning problem the loss ofU (unlabeled)
data can be expressed by the residual between the loss of
all data and that of P (positive) data.

JM (Θ)=
∑
x∈X

(∑
y∈Y

α−xy(r−−r̂xy)
2−
∑
y∈Y +

x

α−xy(r−−r̂xy)
2
)

(5)

A new objective function can be achieved by substituting
Eq.(5) in Eq.(2). We combine the two terms that associates
with P data together into a single term (Note that r+, r−,

1The set relation was also applied in He et al. (2016b); Xin et al. (2018), which
can be regarded as a special case of fBGD as r̂xy is only limited to an explicit dot
product function that deals with two features in a specific domain.

α+
xy , α−xy are independent of θ ∈ Θ). J(Θ) is rewritten as

J(Θ) = const+ JA(Θ) + JP (Θ) (6)

where

JA(Θ)=
∑
x∈X

∑
y∈Y

α−xy(r̂xy − r−)
2

JP (Θ)=
∑
x∈X

∑
y∈Y +

x

(α+
xy−α−xy)

(̂
rxy−

α+
xyr

+ − α−xyr−

α+
xy−α−xy

)
2

(7)

where JA(Θ) and JP (Θ) denote the loss for all and P data
respectively; const denotes a Θ-invariant constant value.
Clearly, the loss of U data has been eliminated. The new
computation complexity is now in J̃A(Θ), which is part of
JA(Θ), defined as:

J̃A(Θ) =
∑
x∈X

∑
y∈Y

α−xy r̂
2
xy − 2r−

∑
x∈X

∑
y∈Y

α−xy r̂xy (8)

So far, we have focused on the loss without considering the
specific formulation of model prediction r̂xy . As described
in Section 2.2, we focus on r̂xy that can be either explic-
itly or implicitly formalized as a dot product (i.e., Eq.(1))
structure based on embedding vectors of x and y. In the
following, we first show the generalized transformation for
a compressed dot product structure. Then, we show how to
apply fBGD to various complex embedding functions with
more input features by constructing the similar structure.

α−xy r̂
2
xy = α−xy

g∑
d=1

px,dqy,d

g∑
d′=1

px,d′qy,d′

=

g∑
d=1

g∑
d′=1

α−xy

(
px,dpx,d′

)(
qy,dqy,d′

) (9)

where we observe that there exists a very nice structure in
above equation — if α−xy is a constant value or a value only
associates with x or y but not (x, y) pair. Considering that
there is no observed (x, y) interaction in unlabeled exam-
ples, it is reasonable to set α−xy as α−y or α−x . The sim-
plified weight design is a necessary condition for efficient
optimization in the following. Here we continue to dis-
cuss the algorithm, assuming α−xy = α−y , and later show
how to design a good weighting scheme. With this set-
ting, the interaction between px,d and qy,d can be safely
separated. Thereby,

∑
y∈Y α

−
y qy,dqy,d′ can be indepen-

dent of the optimization of x-related parameters. That is,
we could achieve a significant speed-up by precomputing
this term. Let caches Sqdd′ =

∑
y∈Y α

−
y qy,dqy,d′ , and

Sqd =
∑
y∈Y α

−
y qy,d, J̃A(Θ) is derived as follows

J̃A(Θ) =

g∑
d=1

g∑
d′=1

Sqdd′
∑
x∈X

px,dpx,d′−2r−
g∑
d=1

Sqd
∑
x∈X

px,d (10)

The rearrangement of nested sums in Eq.(10) is the
key transformation that allows the fast optimization of
fBGD. The computation complexity has reduced from
O(|X||Y |g) in Eq.(8) to O((|X|+ |Y |)g2) in Eq.(10). Op-
timization details regarding the gradient computation are
given in Section 3.3.

3.2 IDENTIFYING THE DOT PRODUCT
STRUCTURE

𝒑𝑥

𝒒𝑦

g 𝑓

g 𝑓 2

𝒑𝑥

𝒒𝑦

2

(a) (b)

Figure 2: (a) denotes the explicit dot product structure, such as
in AllVec (Xin et al., 2018), while (b) is the dot product that im-
plicitly exists in SVDFeature. Each cell denotes a real value.

We notice that the dot product structure implicitly exists in
a variety of embedding modes. Here we show the struc-
ture for a complex embedding model, aka SVDFeature
(Chen et al., 2012), which can be used in context-aware rec-
ommender systems (CARS), content-based image retrieval
system (CBIR) and prior knowledge based word represen-
tation. We also identify the dot product structure for two
tensor-based embedding models (Bailey and Aeron, 2017;
Rendle and Schmidt-Thieme, 2010) in Appendix A. The
model equation of SVDFeature is defined as

r̂xy = w0 + wzT +

pX∑
j=1

pY∑
j′=1

〈vXj , vYj′〉zXx,jzYy,j′ (11)

where z is the feature vector. E.g., in a context-aware music
recommender system, it is defined as

z=(

user IDs︷ ︸︸ ︷
0, ..., 1, ..., 0,

10 previous tracks IDs︷ ︸︸ ︷
0, 0.1, ..., 0.1, 0,

time︷︸︸︷
0, 1︸ ︷︷ ︸

zXx

,

current track ID︷ ︸︸ ︷
0, ..., 1, ..., 0,

artists︷ ︸︸ ︷
0, 1, ..., 0︸ ︷︷ ︸

zYy

)

x and y are described by zXx and zYy respectively. zXx,j is
j-th element in zXx , which is x-th row in ZX ∈ R|X|×pX .
pX is the number of features in zXx . vXj is the j-th row
in VX ∈ RpX×f , where f is the original embedding size.
Inspired by Rendle and Freudenthaler (2014), we rewrite
Eq.(11) as an implicit dot product structure (see Figure 2).

r̂xy =

g∑
d=1

px,dqy,d (12)

where g = f + 2 and

px,d =

pX∑
j=1

zXx,jv
X
j,d , qy,d =

pY∑
j=1

zYy,jv
Y
j,d

px,f+1 = w0 +

pX∑
j=1

wjz
X
x,j , qy,f+1 = 1

px,f+2 = 1 , qy,f+2 =

pY∑
j=1

w(j+pX)z
Y
y,j

(13)

where vXj,d is the d-th element in vXj . Next, we show the
gradient computation for both explicit (i.e., Eq. (1)) and
implicit dot product (e.g., Eq. (11)) structure.

3.3 EFFICIENT GRADIENTS

Following Section 3.1, the gradients of J̃A(θ) w.r.t. θX ∈
ΘX is given by

OθX J̃A(θ) = 2

g∑
d=1

g∑
d′=1

Sqdd′
∑
x∈X

px,d′Oθpx,d

− 2r−
g∑
d=1

Sqd
∑
x∈X

Oθpx,d

(14)

The optimization process of θY ∈ ΘY is almost symmetric
to θX , except that the weighting scheme α−y is inside the
sum of y ∈ Y . In what follows, we present the gradient
computation for Eq.(14) with both explicit and implicit dot
products.

3.3.1 GRADIENT COMPUTATION WITH Eq.(1)

Assume Eq.(1) is a basic dot product, the gradient of px,d
with respect to px∗,d∗ is given by

Opx∗,d∗ px,d =

{
1 x = x∗ ∧ d = d∗

0 otherwise
(15)

Thus, Eq.(14) simplifies to

Opx∗,d∗ J̃A(θ) = 2

g∑
d=1

Sqd∗dpx∗,d − 2r−Sqd∗ (16)

The cost of Eq.(16) is in O(g), and correspondingly, up-
dating all θX ∈ ΘX is O(|X|g2). Overall, gradient com-
putation for all θ ∈ Θ is O((|X| + |Y |)g2 + |P |g), where
O(|P |g) is the complexity for the gradients of the positive
loss. In contrast, the cost of NS-SGD is O((n + 1)|P |g),
where n+ 1 means n negative y and 1 positive y.

3.3.2 GRADIENT COMUTATION WITH Eq.(11)

The gradients of px,d with respect to wj∗ and vXj∗,d∗ are
given by

Owj∗ px,d=

{
zXx,j∗ d = f + 1

0 otherwise
,OvX

j∗,d∗
px,d=

{
zXx,j∗ d ≤ f
0 otherwise

(17)
Thus, Eq.(14) w.r.t. to wj∗ and vXj∗,d∗ simplifies to

Owj∗ J̃A(θ)=2

g∑
d=1

Sq(f+1)d

∑
x∈X

px,dz
X
x,j∗−2r−Sq(f+1)

∑
x∈X

zXx,j∗

(18)
OvX

j∗,d∗
J̃A(θ)=2

g∑
d=1

Sqd∗d
∑
x∈X

px,dz
X
x,j∗−2r−Sqd∗

∑
x∈X

zXx,j∗ (19)

Note that the computation of sums over x ∈ X can be ac-
celerated by only iterating over x where zXx,j∗ 6= 0. More-
over, px,d is able to be precomputed to reduce the cost.

Although px,d changes when updating θX , it can be up-
dated in synchronization with the changes in θX , denoted
by4θX .

px,d ← px,d + zXx,j4θX = px,d − zXx,jγOθJ(θ) (20)

Analogously with Section 3.3.1, the total time complexity
of OθJA(θ) (or OθJ̃A(θ)) in one iteration for all parameters
is O(g2(N(X) +N(Y))), where N(X) and N(Y) are the
number of non-zero elements in ZX and ZY . Finally, the
efficient computation for θ is reasonably given as follows2

θ ← θ − γ(OθJA(θ) + OθJp(θ)) (21)

The detailed implementation of fBGD is in Appendix B.

3.4 WEIGHTING ON UNLABELED DATA

Now that the basic description of the speed-up process for
fBGD is completed, we proceed to discuss the weighting
scheme in this section. First, in terms of α+

xy , any reason-
able weighting scheme could be adopted and will not af-
fect the analysed computation. For example, on the word
embedding task (see Section 5) we set α+

xy the same as in
GloVe (Pennington et al., 2014), while we set it as 1 for the
other tasks considering that there is no available frequency
information for positive (x, y) pairs.

As for α−y , we design a non-uniform weighting scheme
based on the property of y. Our weighting scheme is origi-
nally motivated by the frequency-based oversampling idea
such as Skip-gram model (Mikolov et al., 2013b) and (Yuan
et al., 2016a). However, both methods are tailored for the
SGD or the mini-batch gradient descent (MGD) (He and
Chua, 2017) optimization. Clearly, sampling techniques do
not suit our model, because the focus of fBGD is an all-
sample based optimization method. Hence, a frequency-
based weighting scheme is more suitable for our optimiza-
tion setting. To effectively differentiate true negative and
unknown examples, we assign a larger weight for the unla-
beled data with high y frequency, and a smaller weight for
the low-frequency y.

α−y = α0
(ezy − 1)ρ∑|Y |
y=1(ezy − 1)ρ

where zy =
py
|P | (22)

where py denotes the frequency of y, which is the num-
ber of observations in P , and α0 determinates the over-
all weight of unlabeled examples to solve the imbalanced-
class problem. The exponent ρ controls weight distribution,
which should be tuned based on the dataset.

4 IMPROVED fBGD

So far, we have discussed the efficiency optimization of
fBGD, However, we observe unreliable results during eval-
uation especially for complex embedding models with

2Again, OθJp(Θ) can be calculated by the standard way, which has the same
time complexity with NS-SGD with the same ratio of negative and positive samples.

0 10 50 100 200 300 400 600

0

0.03

0.06

0.09

0.12

0.15

0.18

training iteration e

N
D

C
G

@
10 Improved fBGD g =0.05

fBGD g =0.00005
fBGD g =0.00001
fBGD g =0.000001

Figure 3: Performance of the improved fBGD (Section 4.2) and
standard fBGD on Last.fm with four features. Note for the stan-
dard fBGD , some gradients will be evaluated as infinite (NaN)
when γ > 5 × 10−5. Clearly, fBGD with vanishing gradient
performs poorly on Last.fm even by fine tuning the learning rate.

more input features, as shown in Figure 3. A novel con-
tribution here is to reveal why unstable gradient issues will
occur for the standard BGD.

4.1 GRADIENT INSTABILITY OF fBGD

While the unstable gradient problem, such as the gradient
exploding and vanishing, has been observed when train-
ing deep neural networks (He et al., 2016a), the optimized
models of fBGD in this paper are mostly shallow embed-
dings. Therefore, the cause of the unstable gradient issue
in our case is fundamentally different from that in the ex-
isting deep layer models, in the sense that in deep models
unstable gradients occur mainly due to cumulative multi-
plying of small/big numbers from previous layers, whereas
in fBGD it is caused by the large batched summation of
sparse features. We expect the following theoretical anal-
ysis and solution could provide practical guidelines for the
future development of batch gradient optimization.

To understand the weird behavior of gradient instability, we
need to revisit the form of gradients. We take the derivation
of vXj,d (d ≤ f) in Eq. (11) w.r.t. the loss of positive data as
an example.

OvX
j∗,d∗

JP (θ) = 2
∑
x∈X

∑
y∈Y +

x

zXx,j∗(α
+
xy − α−y)

(
r̂xy −

α+
xyr

+
xy − α−y r−xy
α+
xy − α−y

)
qy,d∗

(23)

Due to the data sparsity, to compute
∑
x∈X

∑
y∈Y +

x
zXx,j∗

we only need to consider x ∈ X that has a non-zero zXx,j∗
(note that for a feature j, most x have zXx,j∗ equal to zero
which can be safely ignored). Let lj∗ be the number of
non-zero elements in the j∗-th column of ZX .

In real-world data sets, the number of rows in ZX , i.e.,
|X|, can easily scale to many millions or even billion
level and, therefore, it is very likely that lj∗ has dis-
tinct magnitudes for a different column j∗. Moreover, in

Eq.(23) there is another summation
∑
y∈Y +

x
, which rep-

resents the size of observed y for x. The component
value of

∑
x∈X

∑
y∈Y +

x
xXx,j∗ in Eq.(23) varies from 1 to

|X| · |Y |, assuming ZX is a binary matrix. This indicates
the value of Eq.(23) may be very unstable: OvX

j∗,d
JP (θ)

can be too large for a denser feature j∗ that is accompa-
nied by a large

∑
x∈X

∑
y∈Y +

x
zXx,j∗ (e.g., = 106), while

it may be too small for a sparser feature with a small∑
x∈X

∑
y∈Y +

x
zXx,j∗ (e.g., = 1). Accordingly, the overall

gradient OθJ(θ) in Eq.(21) has the same unstable problem.
In this case, a uniform learning rate γ is no longer suit-
able because OθJ(θ) with a larger

∑
x∈X

∑
y∈Y +

x
zXx,j∗ is

likely to explode (i.e. OθJ(θ) = NaN) if using a large
γ, while OθJ(θ) with a smaller

∑
x∈X

∑
y∈Y +

x
zXx,j∗ may

vanish (i.e. OθJ(θ) ≈ 0) if using a small γ. Generally, it
is hard or even impossible to find a medium learning rate
that balances reasonably well in both conditions. To gain
more insight into the performance of fBGD with unstable
gradients, we show results with different learning rates in
Figure 3.

Interestingly, we empirically find that on many datasets
with only two input features (or an explicit dot product
structure), the gradient instability problem may be allevi-
ated by carefully tuning γ. In other words, by many tri-
als with different learning rates, fBGD sometimes is able
to offer reasonable results. However, on data sets with
more feature variables (e.g., Last.fm), the outputs of fBGD
are prone to the NaN error. This is because in the pure
dot product setting, the nested summation

∑
x∈X can be

dropped. As such, although the gradient instability issue
may still happen because of

∑
y∈Y +

x
, it is less severe as the

value of |Y +
x | is much smaller than that of lj · |Y +

x |.

4.2 SOLVING THE UNSTABLE GRADIENT ISSUE

The above theoretical analysis for the gradient estimation
over all data suggests that the same learning rate does not
hold for all model parameters due to the large batched sum-
mation of sparse features. Analytically, by assigning a spe-
cific learning rate for each parameter update, we can con-
trol the unstable gradient to a certain extent. In other words,
fBGD should perform larger updates for small OθJ(θ), and
vice verse.

Based on the above analysis, an intuitive solution is to adapt
the learning rate for each parameter, such as having done in
Adagrad Duchi et al. (2011). While Adagrad is originally
proposed for stochastic gradient method to accelerate con-
vergence, here we show how to apply it on the full gradient
method to address the gradient instability issue. Denoting
γt as the learning rate for the t-th update, we then assign a
personalized learning rate for each parameter θ:

γt(θ)=
γ

Gt(θ)
, Gt(θ) =

{
OθJ(θ)t + ε Gt(θ) = 0√∑

t=1(OθJ(θ)t)2 Gt(θ) 6= 0
(24)

Table 1: Dataset statistics (|U | = |X × Y | − |P |). “Open”
is the OpenImages dataset. “K”, “M” and “B” are short for
thousand, million and billion. (x, y) denotes (word, con-
text), (user, item) and (image, label) in WE, OCCF and
IC respectively. Note that user and item in Lastfm contain
user- and item-related variables.

Data |X| |Y | pX pY |P | |X×Y |
NewsIR 83K 83K 83K 83K 150M 6.9B
Text8 71K 71K 71K 71K 47M 5.0B
Yahoo 200K 136K 200K 136K 76M 27.2B
Lastfm 63K 58K 65K 75K 1.3M 3.7B
Open 1.4M 7.5K 1.4M 7.5K 11.4M 10.5B

where OθJ(θ)t is the gradient w.r.t. θ for the t−th up-
date, GT (θ) is the accumulation of the squared gradients,
and ε is a smoothing term to avoid division by zero, set as
10−4. The overall algorithm of improved fBGD can be im-
plemented by replacing γ in Eq.(21) and Eq.(20) with the
new γt(θ).

5 EXPERIMENTS

fBGD is a generic PU learning model and can be applied
in a wide range of tasks with PU data and sparse features.
For evaluation purpose, we verify its performance in three
fields — word embedding (WC) of NLP, collaborative fil-
tering (CF) of IR, and image classification (IC) of CV.

5.1 EXPERIMENTAL SETUP

5.1.1 Datasets

We use five benchmark datasets for evaluation: NewsIR3

and Text84 for WE, Yahoo music5 and Lastfm6 for CF, and
OpenImages Krasin et al. (2017) for IC. For NewsIR, we
preprocess them by a standard pipeline, i.e., removing non-
textual elements, lowercasing and tokenization. For Yahoo,
we use the “train_0” file. For Lastfm, we follow Weston
et al. (2012) by extracting the latest one-week actions per
user via the timestamp, and consider two tracks played by
the same user as “consecutive" if they are played within 90
minutes. It is used as a context-aware (or next-item) rec-
ommendation dataset, where each x contains a user and his
previously played music tracks and each y contains a music
track and its artist. For OpenImages, we randomly sample
a number of (image, label) pairs from the original dataset.
The statistics of datasets are summarized in Table 1.

3
http://research.signalmedia.co/newsir16/

signal-dataset.html
4
http://mattmahoney.net/dc/text8.zip

5
http://webscope.sandbox.yahoo.com/catalog.php?

datatype=r&did=2
6
http://www.dtic.upf.edu/~ocelma/

MusicRecommendationDataset/

Table 2: Model Comparison. “SG” and “SVDF" is short for
Skip-gram and SVDFeature respectively.

Model Sampler Ratio Optimizer Loss

SG×10 Static 1:10 SGD LOG
GloVe - - SGD LS
SVDF×8 Uniform 1:8 SGD LS
BPRFM Uniform 1:1 SGD L2R
λFM Static 1:1 SGD L2R
WARP Dynamic 1:1 SGD L2R
VSE-ens Dynamic 1:1 SGD L2R
fBGD - - BGD LS

“Uniform”,“Static” and “Dynamic” are short for a uniform, static and dynamic
sampler respectively. Static sampler means the sampling distribution of negative
examples is defined before training and keeps unchanged during the whole opti-
mization process. Dynamic sampler changes the sampling distribution of negative
examples according to the current state of the learning algorithm. “Ratio” repre-
sents the positive-to-negative example ratio. “LS”, “LOG”, and “L2R” are short
for the least square, logistic, and learning-to-rank loss function respectively. Note
that we only evaluate λFM with the static sampler in this paper, considering the
efficiency issues of the dynamic samplers.

5.1.2 Baselines and Evaluation

For WE, we compare fBGD with Skip-gram (Mikolov
et al., 2013b) and GloVe (Pennington et al., 2014). For
CF, we compare it with SVDFeature (Chen et al., 2012),
BPRFM (Rendle, 2012; Rendle et al., 2009), and λFM
(Yuan et al., 2016a). For IC, we compare it with SVDFea-
ture, WARP (Weston et al., 2011) and VSE-ens (Guo et al.,
2018b). For SVDFeature, we optimize it with the least
square loss, and use the negative sampling strategy. The
negative examples used for training are uniformly sampled
from U . To show the impact of negative sampling, we vary
the size of negative examples for each positive one. E.g.,
SVDFeature×8 means the positive-to-negative ratio is 1:8.
Table 2 summarizes the characteristics of these baselines.

To assess the performance of fBGD on the WE task, we
use the analogical reasoning task introduced by Mikolov
et al. (2013a). While to evaluate the CF and IC tasks,
we regard them as a ranking or classification task. We
report NDCG@10 (Normalized Discounted Cumulative
Gain) and MRR@10 (Mean Reciprocal Rank) for CF and
AUC (Area Under ROC Curve) for IC.

On the WE task, we evaluate the quality of the word vectors
learned from the training datasets. For CF and IC, we adopt
the leave-one-out evaluation protocol (Rendle et al., 2009).

5.1.3 Experimental Settings

All reported results on each task use a fixed-size embed-
ding dimension without special mention. Specifically, we
set embedding dimension as 200, 20 and 100 for the WE,
CF and IC tasks respectively. For fBGD, we set the learn-
ing rate γ as 0.05 with Adagrad on all three tasks. Re-
garding r+, we apply the PPMI (positive pointwise mutual
information) on the WE task inspired by Levy and Gold-
berg (2014). For the other two tasks, we simply set it as 1.
r− can be set as 0 or -0.5. Empirically, we report results of

Table 3: Results on the word analogy task. “Sem”, “Syn”
and “Tot” denote the semantic, syntactic and total accu-
racy [%]. The positive-to-negative example ratio in SG is
1 : 10 and 1 : 25 in NewsIR and Text8 respectively sug-
gested by Mikolov et al. (2013b).

Model NewsIR Text8

Sem Syn Tot Sem Syn Tot

SG 70.8 47.5 58.1 47.5 32.3 38.6
GloVe 78.8 41.6 58.5 45.1 26.9 34.5
fBGD 77.0 46.1 59.7 56.5 30.4 41.3

Table 4: Results on the CF task. NDCG and MRR de-
note NDCG@10 and MRR@10 respectively. For each
measure, the best results for SVDFeature (SVDF) and all
models are indicated in bold.

Model Yahoo Lastfm

NDCG MRR NDCG MRR

SVDF×1 0.0067 0.0044 0.0436 0.0285
SVDF×4 0.0133 0.009 0.0565 0.0391
SVDF×16 0.0186 0.0132 0.0535 0.0390
SVDF×64 0.0197 0.0139 0.0360 0.0263
SVDF×256 0.0193 0.0139 - -
BPRFM 0.0178 0.0124 0.1056 0.0740
λFM 0.0200 0.0140 0.1312 0.0950
fBGD 0.0224 0.0161 0.1800 0.1371

baseline models with optimal hyperparameters whereas for
fBGD, we only report results with above default settings.

5.2 ACCURACY AND DISCUSSION

5.2.1 Overall Results and Sampling Bias

We report results of all models in Tables 3, 4 and 5 for the
three tasks. Our first observation is that fBGD achieves the
best performance across all the evaluation metrics and all
the datasets. For example, fBGD outperforms Skip-gram
and GloVe in the two text corpora w.r.t. the total accuracy.

Remarkably, fBGD can easily outperform the strong base-
lines (e.g., λFM, WARP and VSE-ens) in the ranking and
classification tasks, although it optimizes a regression loss
which is typically suboptimal for ranking and classifica-
tion. We attribute the advantage of fBGD to two aspects:
(1) the optimization of each model parameter in fBGD
makes use of all unlabeled data, whereas the SGD mod-
els (including MGD) only use a fraction of sampled data.
In other words, important negative examples may be ig-
nored or under-trained; (2) the tailored weighting scheme

Table 5: Results on the IC task.

Metric SVDF×1 SVDF×4 SVDF×16
AUC 0.681 0.724 0.747

SVDF×64 WARP VSE-ens fBGD
0.663 0.696 0.723 0.772

0 64 128 256 512

50

55

60

a0

A
cc

ur
ac

y
[%

]

Total

(a) NewsIR: tune α0 (ρ = 0.8)

0 0.2 0.4 0.6 0.8 1.0

55

57

59

r

A
cc

ur
ac

y
[%

]

Total

(b) NewsIR: tune ρ (α0=128)

8 32 128 512 2048

0.02

0.03

0.04

0.05

0.06

0.07

0.08

a0

R
an

k
A

cc
ur

ac
y

MRR@10
NDCG@10

(c) Lastfm: tuneα0 (ρ = 0)

0.0 0.2 0.4 0.5 0.6 0.8 1.0

0

0.05

0.1

0.15

0.2

r

R
an

k
A

cc
ur

ac
y

MRR@10
NDCG@10

(d) Lastfm: tune ρ (α0=32)

Figure 4: Impact of α0 and ρ on fBGD.

Table 6: Accuracy evaluation of fBGD by adding features.
u, p, i and a denote user, last item (song), next item and
artist respectively.

Metrics (u, i) (u, p, i) (u, p, i, a)
NDCG@10 0.0416 0.1722 0.1800
MRR@10 0.0281 0.1301 0.1371

can help BGD address the imbalanced-class problem in PU
data (see Table 1), and assign fine-grained penalties for fur-
ther improvement.

Our second key observation in the following also veri-
fies the above analysis. As shown in Table 4 (Yahoo),
SVDF×64 > SVDF×16 >SVDF×4 >SVDF×1, while
SVDF×256 <SVDF×64. The results suggest that the per-
formance of SGD models is sensitive to the sampling size
of negative examples. To be more specific, one negative
sample for a positive example is insufficient to achieve
optimal performance; sampling more negative examples
is beneficial but too many negative examples may also
hurt the performance. In addition, although SVDF×64
> SVDF×1, the theoretical computation complexity of
SVDF×64 is about 32 times higher than SVDF×1. Still
in Table 4, λFM largely improves BPRFM, which demon-
strates the impact of sampling distribution of negative ex-
amples (see Table 2). However, the true distribution of neg-
ative (x, y) pairs in unlabeled samples is unknown in prac-
tice. That is, regardless of what samplers are used, sam-
pling based methods cannot converge to the same loss with
all examples or true data.

Table 7: Time Complexity of various optimizers per itera-
tion. |X||Y |g is much larger than (|X|+ |Y |)g2 and |P |g.
The size relation between |P |g and (|X|+ |Y |)g2 depends
on the sparsity of the data and the embedding dimension g.

Model Time Complexity
SGD×n O((n+ 1)|P |g)
BGD O(|X||Y |g)
fBGD O((|X|+ |Y |)g2 + |P |g)

Table 8: Comparison of runtime (second/minute/hour
[s/m/h]). “S”, "I" and "T" represents the training time for
a single iteration, overall iterations and total time respec-
tively. SGD denotes Skip-gram for NewsIR and SVDFea-
ture for other datasets. n is set as the optimal value, i.e., 10,
4 and 16 for NewsIR, Lastfm and OpenImages respectively.

Model NewsIR Lastfm OpenImages

S I T S I T S I T

SGD×n 715s 15 179m 156s 50 130m 26m 100 43h

fBGD 388s 75 485m 26s 200 87m 576s 200 32h

5.2.2 Impact of Weighting in fBGD

In this section, we show the impact of the weighting func-
tion for fBGD. We take the NewsIR and Lastfm datasets
as an example, and omit similar results in other datasets.
Figure 4 shows the prediction quality by tuning α0 and ρ
in the weight function. We first fix the value of ρ (e.g., 0
in CF and 0.8 in WE) to study the impact of α0. Then, we
use the best value of α0 to study ρ. As shown, the over-
all coefficient α0 largely impacts the performance as the
amount of positive and “negative” examples fed in fBGD
is highly imbalanced, the results of which are reflected in
(a) and (c). We observe that a proper ρ can improve the
performance, as shown in (b) and (d). The intuition behind
the improvement is that high-frequent y (words or items)
that are not observed in Y +

x have a higher likelihood to be
true negatives, and thus deserve more penalties.

5.2.3 Effectiveness in Modelling features

To show the generality of fBGD, we have described how to
apply it to complex embedding models, e.g., SVDFeature
used in CARS. For example, we gradually add features for
fBGD on Lastfm and report results in Table 6. As expected,
fBGD performs largely better with (u, p, i) than (u, i) and
that performance is further enhanced with (u, p, i, a). That
is, fBGD yields the best prediction accuracy with all fea-
tures, demonstrating its power on feature engineering.

5.2.4 Runtime

Table 7 summarizes the time complexity of the SGD, BGD
and fBGD algorithms in one iteration when optimizing the
pure dot product function. As shown, the complexity of

fBGD is determined by the gradient computation of both
positive and unlabeled data, rather than the unlabeled data
only. In practice, the runtime is mainly affected by the
data sparsity and embedding size. For example, on the WE
task, O(|P |g) is larger than O((|X|+ |Y |)g2), while on the
IC task O((|X| + |Y |)g2) is almost 10 times larger than
O(|P |g) because the NewsIR and Text8 datasets are much
denser than the OpenImages dataset (see Table 1). We have
compared the overall training time7 of fBGD with the NS-
based SGD methods in Table 8. It shows that fBGD obtains
comparable efficiency to the classic SGD-based algorithm.
More detailed runtime results in shown in Appendix C.

6 RELATED WORK

Gradient methods are one of the most popular algorithms
to perform optimization in the practice of machine learn-
ing. They have also been widely used for training embed-
ding models, and have almost dominated the optimization
field. So far the most commonly used gradient optimiza-
tion method is SGD (Mikolov et al., 2013a,b; Pennington
et al., 2014; Rendle et al., 2009; Weston et al., 2011) or a
compromise MGD (mini-batch gradient descent) (Li et al.,
2014; He et al., 2017), which attempts to approximate the
true gradient by a single or a mini-batch of instances with
sampling techniques. However, the balance between com-
puting the expensive true gradient based on the whole batch
and the immediate gradient based on a single or a frac-
tion of instances could easily result in suboptimal perfor-
mance. More importantly, on large-scale data the sampling
size and distribution for SGD/MGD also significantly af-
fect the convergence rate and prediction accuracy (Bengio
and Senécal, 2008). In particular for PU data, it is non-
trivial to sample from large and highly imbalanced unla-
beled data. Most works deal with this issue by proposing a
certain trade-off between efficiency and accuracy. For ex-
ample, various negative sampling methods have been pro-
posed in recent literature (Mikolov et al., 2013b; Pan et al.,
2008; Weston et al., 2012; Yuan et al., 2016a, 2017; Wang
et al., 2017; Guo et al., 2018a,b). The basic idea behind this
is to select the most informative unlabeled instances as neg-
ative examples for an SGD/MGD trainer which, however,
easily leads to bias itself. Moreover, all aforementioned
works either expose efficiency issues with a dynamic sam-
pler (Weston et al., 2012; Wang et al., 2017; Yuan et al.,
2016a) or result in suboptimal training instances with a
uniform (Rendle et al., 2009) or static (defined before op-
timization) sampler (Mikolov et al., 2013a,b; Yuan et al.,
2016b, 2017) in practice. Our fBGD in this work departs
from all above studies by adopting BGD to optimize gen-
eral embedding models with the entire batch of data.

It is worth mentioning that the fBGD method is inspired

7For fairness, efficiency tests for all training models were running on Intel(R)
Xeon(R) E5620 @ 2.40GHz CPU and 49G RAM. Note that on the WE task, we
implemented all models with 8 threads in parallel, while on the other two tasks, we
implemented the models in a single-thread.

from our extensive empirical studies on previous works (He
et al., 2016b; Bayer et al., 2017; Xin et al., 2018). The
main difference is that these works are focused on a spe-
cific task, e.g., He et al. (2016b); Bayer et al. (2017) are
only on recommendation and Xin et al. (2018) is on word
representation. Specifically, He et al. (2016b); Xin et al.
(2018) worked on the simple matrix factorization model,
which cannot be used to incorporate other features, such
as contextual variables associated with each observed ex-
ample. While the alternating least squares (ALS) method
proposed in Bayer et al. (2017) can be applied to any k-
separable model8, it requires to estimate the second-order
derivatives to apply the Newton update and only supports a
constant weight on unlabeled examples; moreover, our em-
pirical evidence shows that training with Newton update is
(1) very sensitive to initialization point and the regulariza-
tion term, and (2) highly unstable due to some gradient is-
sues, especially for embedding models (e.g., FM and SVD-
Feature) with many input features or large word corpus. By
contrast, this work targets at solving the generic PU learn-
ing problem with generic embedding models. It leads to a
unified solution that is applicable to a wide range of tasks,
including but not limited to the ones demonstrated in this
paper, with just simple changes on input features.

7 CONCLUSION

This work has several key contributions. First, we showed
how to efficiently train a variety of embedding models by
batch gradient descent for positive unlabeled (PU) data.
Second, we identified an unstable gradient issue in fBGD
due to the large batched summation of sparse features, and
solve it by an intuitive way. To make the prediction ac-
curacy of fBGD comparable to the state-of-the-arts, we
employed a general weighting scheme for unlabeled exam-
ples. Despite simple, the weighting scheme could address
two challenges, namely imbalanced-class issue in PU data
and the differentiation of true negative and unknown exam-
ples. We studied the performance of fBGD in three sub-
fields, and showed that fBGD outperformed state-of-the-
art baselines. Compared with the ranking or classification
models, fBGD is clearly a regression model, which means
the real-valued scores estimated by it are more informa-
tive than those by ranking or classification algorithms. This
will make our method highly attractive for practical usage.
Moreover, the proposed fBGD is not limited to the domains
discussed in this paper. It potentially benefits many real-
world applications with PU data, such as genes association
studies (Asgari and Mofrad, 2015; Yang et al., 2014) and
data stream mining (Li et al., 2009), etc.

References
E. Asgari and M. R. Mofrad. Continuous distributed represen-

tation of biological sequences for deep proteomics and ge-
8In essence, the concept of k-separable is to describe a model with a dot product

structure of Equation (1).

nomics. PloS one, 2015.

E. Bailey and S. Aeron. Word embeddings via tensor factoriza-
tion. arXiv preprint arXiv:1704.02686, 2017.

I. Bayer, X. He, B. Kanagal, and S. Rendle. A generic coordi-
nate descent framework for learning from implicit feedback.
In WWW. International World Wide Web Conferences Steering
Committee, 2017.

Y. Bengio and J.-S. Senécal. Adaptive importance sampling to
accelerate training of a neural probabilistic language model.
IEEE Transactions on Neural Networks, 2008.

T. Chen, W. Zhang, Q. Lu, K. Chen, Z. Zheng, and Y. Yu. Svdfea-
ture: a toolkit for feature-based collaborative filtering. JMLR,
2012.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods
for online learning and stochastic optimization. JMLR, 2011.

G. Guo, S. Ouyang, F. Yuan, and X. Wang. Approximating word
ranking and negative sampling for word embedding. In IJCAI,
2018a.

G. Guo, S. Zhai, F. Yuan, Y. Liu, and X. Wang. Vse-ens: Visual-
semantic embeddings with efficient negative sampling. In
AAAI, 2018b.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for
image recognition. In CVPR, 2016a.

X. He and T.-S. Chua. Neural factorization machines for sparse
predictive analytics. In SIGIR, 2017.

X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua. Fast matrix factor-
ization for online recommendation with implicit feedback. In
SIGIR, 2016b.

X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural
collaborative filtering. In WWW, 2017.

I. Krasin, T. Duerig, N. Alldrin, and V. Ferrari. Open-
images: A public dataset for large-scale multi-label and
multi-class image classification. Dataset available from
https://github.com/openimages, 2017.

O. Levy and Y. Goldberg. Neural word embedding as implicit
matrix factorization. In NIPS, 2014.

M. Li, T. Zhang, Y. Chen, and A. J. Smola. Efficient mini-batch
training for stochastic optimization. In KDD, 2014.

X.-L. Li, P. S. Yu, B. Liu, and S.-K. Ng. Positive unlabeled learn-
ing for data stream classification. In ICDM, 2009.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estima-
tion of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013a.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean.
Distributed representations of words and phrases and their
compositionality. In NIPS, 2013b.

P. Ng. dna2vec: Consistent vector representations of variable-
length k-mers. arXiv preprint arXiv:1701.06279, 2017.

R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and
Q. Yang. One-class collaborative filtering. In ICDM, 2008.

J. Pennington, R. Socher, and C. Manning. Glove: Global vectors
for word representation. In EMNLP, 2014.

S. Rendle. Factorization machines with libFM. ACM Trans. Intell.
Syst. Technol., 2012.

S. Rendle and C. Freudenthaler. Improving pairwise learning
for item recommendation from implicit feedback. In WSDM,
2014.

S. Rendle and L. Schmidt-Thieme. Pairwise interaction tensor
factorization for personalized tag recommendation. In WSDM,
2010.

S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme.
Bpr: Bayesian personalized ranking from implicit feedback. In
UAI, 2009.

S. Ruder. An overview of gradient descent optimization algo-
rithms. arXiv preprint arXiv:1609.04747, 2016.

J. Wang, L. Yu, W. Zhang, Y. Gong, Y. Xu, B. Wang, P. Zhang,
and D. Zhang. Irgan: A minimax game for unifying genera-
tive and discriminative information retrieval models. In SIGIR,
2017.

J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling up to large
vocabulary image annotation. In IJCAI, 2011.

J. Weston, C. Wang, R. Weiss, and A. Berenzweig. Latent collab-
orative retrieval. ICML, 2012.

X. Xin, F. Yuan, X. He, and J. M. Jose. Batch is not heavy: Learn-
ing word representations from all samples. In ACL, 2018.

P. Yang, X. Li, H.-N. Chua, C.-K. Kwoh, and S.-K. Ng. Ensem-
ble positive unlabeled learning for disease gene identification.
PloS one, 2014.

F. Yuan, G. Guo, J. M. Jose, L. Chen, H. Yu, and W. Zhang.
Lambdafm: learning optimal ranking with factorization ma-
chines using lambda surrogates. In CIKM, 2016a.

F. Yuan, J. M. Jose, G. Guo, L. Chen, H. Yu, and R. S.
Alkhawaldeh. Joint geo-spatial preference and pairwise rank-
ing for point-of-interest recommendation. In ICTAI. IEEE,
2016b.

F. Yuan, G. Guo, J. M. Jose, L. Chen, H. Yu, and W. Zhang.
Boostfm: Boosted factorization machines for top-n feature-
based recommendation. In IUI, 2017.

A Unified Batch Gradient Approach for Positive Unlabeled Learning

A Dot Product Structures in Tensor Models

(1) For the Pairwise Interaction Tensor Factorization (Rendle and Schmidt-Thieme, 2010) (Note that here VX , VY and VH are shared
for pairwise interactions, while in the original paper they are independent.):

r̂xy =

f∑
d=1

vXj,dv
H
j′,dv +

f∑
d=1

vXj,dv
Y
j′′,d +

f∑
d=1

vHj′,dv
Y
j′′,d (25)

we have g = f + 1 and
pxh,d = vXj,d + vHj′,d , qy,d = vYj′′,d

pxh,f+1 =

f∑
d=1

vXj,dv
H
j′,d , qy,f+1 = 1

(26)

(2) For a tensor factorization (TF) — rank-f Canonical Polyadic Decomposition (Bailey and Aeron, 2017):

r̂xy =

f∑
d=1

vXj,dv
H
j′,dv

Y
j′′,d (27)

we have g = f and
pxh,d = vXj,dv

H
j′,d , qy,d = vYj′′,d (28)

where the gradient, e.g., OvX
j,d
pxh,d is vHj′,d. Note we assume that vXj,d and vHj′,d belong to x-related parameters, while vYj′′,d is a

parameter related to y.

B Learning of fBGD

Algorithm 1 summarizes the accelerated algorithm for fBGD . We define the Spdd′ and Spd caches as Spdd′ =
∑
x∈X px,dpx,d′ and

Spd =
∑
x∈X px,d respectively. The gradients w.r.t. θY ∈ ΘY is given by

OθY J̃A(θ) = 2

g∑
d=1

g∑
d′=1

Spdd′
∑
y∈Y

α−y qy,d′Oθqy,d − 2r−
g∑
d=1

Spd
∑
y∈Y

α−y Oθqy,d (29)

Note that Line 5-10 and 21 can be omitted when optimizing the pure dot product function, i.e., Eq.(1); g′ in Line 18 equals to g and
g − 2 (i.e., f) for Eq.(1) and Eq.(11) respectively.

C Runtime Results

1

73

0

20

40

60

80

(x,y)
features

N
or

m
al

iz
ed

 tr
ai

ni
ng

 ti
m

e

BGD
fBGD

(a) NewsIR (g=200)

1

444

0

100

200

300

400

(x,y)
features

N
or

m
al

iz
ed

 tr
ai

ni
ng

 ti
m

e

BGD
fBGD

(b) Yahoo (g=20)

1

1001

1.3

1492

1.5

1964

0

500

1000

1500

2000

(u,i) (u,p,i) (u,p,i,a)
features

N
or

m
al

iz
ed

 tr
ai

ni
ng

 ti
m

e

BGD
fBGD

(c) Lastfm (f=20)

0.16

0.39

0.68

1

1.75

0.0

0.5

1.0

1.5

50 100 150 200 300
g

N
or

m
al

iz
ed

 tr
ai

ni
ng

 ti
m

e

fBGD

(d) NewsIR

0.7 1
2

4.27

15.3

0

5

10

15

10 20 50 100 200
g

N
or

m
al

iz
ed

 tr
ai

ni
ng

 ti
m

e

fBGD

(e) Yahoo

0.6 1

2.6

6.1

16.7

0

5

10

15

10 20 50 100 200
f

N
or

m
al

iz
ed

 tr
ai

ni
ng

 ti
m

e

fBGD

(f) Lastfm

9 29 51 71

50

55

60

training iteration

A
cc

ur
ac

y[
%

]

GloVe
fBGD

(g) NewsIR

1 20 40 60 80 120 160 200

2

2.5

3

3.5

training iteration

O
ve

ra
ll

lo
ss

 (
bi

lli
on

)

fBGD

(h) Yahoo

1 20 40 60 80 120 160 200

0

0.05

0.1

0.15

training iteration

N
D

C
G

@
10

fBGD

(i) Lastfm

Figure 5: (a), (b) and (c) show the runtime per iteration (fBGD vs BGD). One unit in (a)(d), (b)(e) and (c)(f) is 388, 165,
26 seconds respectively. (d), (e) and (f) show the runtime change (per iteration) by increasing embedding size. (g), (h) and
(i) show the convergence behavior reflected by the training loss or predicted accuracy.

Algorithm 1 Generic fBGD Learning Algorithm

1: Input: P, X, Y, Cache vectors sq , sp, Cache matrices E, Q, Sq , Sp;
2: Output: Θ
3: Initialize Θ ∼ N (0, 0.01):
4: for e = 1, ...,maxiter do
5: for d ∈ {1, .., g} do
6: for x ∈ X do
7: Compute pxd, store in E (E ∈ R|X|×g)
8: end for
9: Repeat line 6 to 8 for y ∈ Y

10: end for
11: for d ∈ {1, .., g} do
12: Compute Sqd , store in sq (sq∈Rg)
13: for d′ ∈ {1, .., g} do
14: Compute Sqdd′ , store in Sq (Sq∈Rg×g)
15: end for
16: end for
17: for j ∈ {1, .., pX} do
18: for d ∈ {1, .., g′} do
19: Compute OθXJA(Θ),OθXJp(Θ)
20: Update θX as in Eq.(21)
21: Update px,d as in Eq.(20)
22: end for
23: end for
24: Repeat line 11 to 23 for updating θY

25: end for

