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ABSTRACT
In session-based or sequential recommendation, it is important
to consider a number of factors like long-term user engagement,
multiple types of user-item interactions such as clicks, purchases
etc. The current state-of-the-art supervised approaches fail to model
them appropriately. Casting sequential recommendation task as a
reinforcement learning (RL) problem is a promising direction. A
major component of RL approaches is to train the agent through
interactions with the environment. However, it is often problematic
to train a recommender in an on-line fashion due to the requirement
to expose users to irrelevant recommendations. As a result, learning
the policy from logged implicit feedback is of vital importance,
which is challenging due to the pure off-policy setting and lack of
negative rewards (feedback).

In this paper, we propose self-supervised reinforcement learning
for sequential recommendation tasks. Our approach augments stan-
dard recommendation models with two output layers: one for self-
supervised learning and the other for RL. The RL part acts as a reg-
ularizer to drive the supervised layer focusing on specific rewards
(e.g., recommending items which may lead to purchases rather than
clicks) while the self-supervised layer with cross-entropy loss pro-
vides strong gradient signals for parameter updates. Based on such
an approach, we propose two frameworks namely Self-Supervised Q-
learning (SQN) and Self-Supervised Actor-Critic (SAC). We integrate
the proposed frameworks with four state-of-the-art recommen-
dation models. Experimental results on two real-world datasets
demonstrate the effectiveness of our approach.

CCS CONCEPTS
• Information systems → Recommender systems; Retrieval
models and ranking; Novelty in information retrieval.
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1 INTRODUCTION
Generating next item recommendation from sequential user-item
interactions in a session (e.g., views, clicks or purchases) is one of
the most common use cases in domains of recommender systems,
such as e-commerce, video [18] and music recommendation [42].
Session-based and sequential recommendation models have often
been trained with self-supervised learning, in which the model is
trained to predict the data itself instead of some “external” labels.
For instance, in language modeling the task is often formulated as
predicting the next word given the previousm words. The same
procedure can be utilized to predict the next item the user may be
interested given past interactions, see e.g., [14, 21, 42]. However,
this kind of approaches can lead to sub-optimal recommendations
since the model is purely learned by a loss function defined on the
discrepancy between model predictions and the self-supervision
signal. Such a loss may not match the expectations from the per-
spective of recommendation systems (e.g., long-term engagement).
Moreover, there can be multiple types of user signals in one session,
such as clicks, purchases etc. How to leverage multiple types of
user-item interactions to improve recommendation objectives (e.g.,
providing users recommendations that lead to real purchases) is
also an important research question.

Reinforcement Learning (RL) has achieved impressive advances
in game control [27, 37] and related fields. A RL agent is trained
to take actions given the state of the environment it operates in
with the objective of getting the maximum long-term cumulative
rewards. A recommender system aims (or should aim) to provide
recommendations (actions) to users (environment) with the objec-
tive of maximising the long-term user satisfaction (reward) with the
system. Since in principle the reward schema can be designed at will,
RL allows to create models that can serve multiple objectives such
as diversity and novelty. As a result, exploiting RL for recommen-
dation has become a promising research direction. There are two
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classes of RL methods: model-free RL algorithms and model-based
RL algorithms.

Model-free RL algorithms need to interact with the environment
to observe the feedback and then optimize the policy. Doing this
in an on-line fashion is typically unfeasible in commercial recom-
mender systems since interactions with an under-trained policy
would affect the user experience. A user may quickly abandon the
service if the recommendations don’t match her interests. A typical
solution is learning off-policy from the logged implicit feedback.
However, this poses the following challenges for applying RL-based
methods:

(1) Pure off-policy settings. The policy should be learned from fixed
logged data without interactions with the environment (users).
Hence the data from which the RL agent is trained (i.e., logged
data) will not match its policy. [3] proposed to use propensity
scores to perform off-policy correction but this kind of methods
can suffer from unbounded high variances [28].

(2) Lack of data and negative rewards. RL algorithms are data hun-
gry, traditional techniques overcome this by either simulating
the environments or by running RL iterations in controlled en-
vironments (e.g. games, robots). This is challenging in the case
of recommendations especially considering the large number
of potential actions (available items). Moreover, in most cases
learning happens from implicit feedback. The agent only knows
which items the user has interacted with but has no knowledge
about what the user dislikes. In other words, simply regressing
to the Bellman equation [1] (i.e., Q-learning) wouldn’t lead to
good ranking performance when there is no negative feedback
since the model will be biased towards positive relevance values.

An alternative to off-policy training for recommender systems is
the use of model-based RL algorithms. In model-based RL, one first
builds a model to simulate the environment. Then the agent can
learn by interactions with the simulated environment [4, 36]. These
two-stage methods heavily depend on the constructed simulator.
Although related methods like generative adversarial networks
(GANs) [9] achieve good performance when generating images,
simulating users’ responses is a much more complex task.

In this paper, we propose self-supervised reinforcement learn-
ing for recommender systems. The proposed approach serves as
a learning mechanism and can be easily integrated with existing
recommendation models. More precisely, given a sequential or
session-based recommendation model, the (final) hidden state of
this model can be seen as it’s output as this hidden state is multiplied
with the last layer to generate recommendations [14, 21, 38, 42]. We
augment these models with two final output layers (heads). One is
the conventional self-supervised head1 trained with cross-entropy
loss to perform ranking while the second is trained with RL based
on the defined rewards such as long-term user engagement, pur-
chases, recommendation diversity and so on. For the training of
the RL head, we adopt double Q-learning which is more stable and
robust in the off-policy setting [10]. The two heads complement
each other during the learning process. The RL head serves as a
regularizer to introduce desired properties to the recommendations

1For simplicity, we use “self-supervised” and “supervised” interchangeable in this
paper. Besides, “head” and “layer” are also interchangeable.

while the ranking-based supervised head can provide negative sig-
nals for parameter updates. We propose two frameworks based on
such an approach: (1) Self-Supervised Q-learning (SQN) co-trains the
two layers with a reply buffer generated from the logged implicit
feedback; (2) Self-Supervised Actor-Critic (SAC) treats the RL head
as a critic measuring the value of actions in a given state while the
supervised head as an actor to perform the final ranking among
candidate items. As a result, the model focuses on the pre-defined
rewards while maintaining high ranking performance. We verify
the effectiveness of our approach by integrating SQN and SAC on
four state-of-the-art sequential or session-based recommendation
models.

To summarize, this work makes the following contributions:
• We propose self-supervised reinforcement learning for se-
quential recommendation. Our approach extends existing
recommendation models with a RL layer which aims to in-
troduce reward driven properties to the recommendation.

• We propose two frameworks SQN and SAC to co-train the
supervised head and the RL head. We integrate four state-
of-the-art recommendation models into the proposed frame-
works.

• We conduct experiments on two real world e-commerce
datasets with both clicks and purchases interactions to val-
idate our proposal. Experimental results demonstrate the
proposed methods are effective to improve hit ratios, es-
pecially when measured against recommending items that
eventually got purchased.

2 PRELIMINARIES
In this section, we first describe the basic problem of generating next
item recommendations from sequential or session-based user data.
We introduce reinforcement learning and analyse its limitations for
recommendation. Lastly, we provide a literature review on related
work.

2.1 Next Item Recommendation
Let I denote the whole item set, then a user-item interaction se-
quence can be represented as x1:t = {x1,x2, ...,xt−1,xt }, where
xi ∈ I(0 < i ≤ t) is the index of the interacted item at timestamp i .
Note that in a real world scenario there may be different kinds of
interactions. For instance, in e-commerce use cases, the interactions
can be clicks, purchases, add to basket and so on. In video recom-
mendation systems, the interactions can be characterized by the
watching time of a video. The goal of next item recommendation is
recommending the most relevant item xt+1 to the user given the
sequence of previous interactions x1:t .

We can cast this task as a (self-supervised) multi-class classi-
fication problem and build a sequential model that generates the
classification logits yt+1 = [y1,y2, ...yn ] ∈ Rn , where n is the num-
ber of candidate items. We can then choose the top-k items from
yt+1 as our recommendation list for timestamp t + 1. A common
procedure to train this type of recommender is shown in Figure
1a. Typically one can use a generative model G to map the input
sequence into a hidden state st as st = G(x1:t ). This serves as a
general encoder function. Plenty of models have been proposed
for this task and we will discuss prominent ones in section 2.3.
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(a) Self-supervised training procedure.
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(b) SQN architecture.
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(c) SAC architecture. CE stands for cross-entropy.

Figure 1: The self-supervised learning procedure for recommendation and the proposed frameworks.

Based on the obtained hidden state, one can utilize a decoder to
map the hidden state to the classification logits as yt+1 = f (st ). It
is usually defined as a simple fully connected layer or the inner
product with candidate item embeddings [14, 21, 38, 42]. Finally,
we can train our recommendation model (agents) by optimizing a
loss function based on the logits yt+1, such as the cross-entropy
loss or the pair-wise ranking loss [31].

2.2 Reinforcement Learning
In terms of RL, we can formulate the next item recommendation
problem as a Markov Decision Process (MDP) [35], in which the
recommendation agent interacts with the environments E (users)
by sequentially recommending items to maximize the long-term
cumulative rewards. More precisely, the MDP can be defined by
tuples consisting of (S,A, P,R, ρ0,γ ) where

• S: a continuous state space to describe the user states. This is
modeled based on the user (sequential) interactions with the
items. The state of the user can be in fact represented by the
hidden state of the sequential model discussed in section 2.1.
Hence the state of a user at timestamp t can be represented
as st = G(x1:t ) ∈ S (t > 0).

• A: a discrete action space which contains candidate items.
The action a of the agent is the selected item to be recom-
mended. In off-line data, we can get the action at timestamp
t from the user-item interaction (i.e., at = xt+1). There are
also works that focus on generating slate (set)-based recom-
mendations and we will discuss them in section 2.3.

• P: S × A × S → R is the state transition probability.
• R: S × A → R is the reward function, where r (s,a) de-
notes the immediate reward by taking action a at user state
s. The flexible reward scheme is crucial in the utility of RL
for recommender systems as it allows for optimizing the rec-
ommendation models towards goals that are not captured by
conventional loss functions. For example, in the e-commerce
scenario, we can give a larger reward to purchase interac-
tions compared with clicks to build a model that assists the

user in his purchase rather than the browsing task. We can
also set the reward according to item novelty [2] to promote
recommendation diversity. For video recommendation, we
can set the rewards according to the watching time [3].

• ρ0 is the initial state distribution with s0 ∼ ρ0.
• γ is the discount factor for future rewards.

RL seeks a target policy πθ (a |s) which translates the user state
s ∈ S into a distribution over actions a ∈ A, so as to maximize the
expected cumulative reward:

max
πθ
Eτ∼πθ [R(τ )], where R(τ ) =

|τ |∑
t=0

γ t r (st ,at ), (1)

where θ ∈ Rd denotes policy parameters. Note that the expectation
is taken over trajectories τ = (s0,a0, s1, ...), which are obtained
by performing actions according to the target policy: s0 ∼ ρ0,
at ∼ πθ (·|st ), st+1 ∼ P(·|st ,at ).

Solutions to find the optimal θ can be categorized into policy
gradient-based approaches (e.g., REINFORCE [41]) and value-based
approaches (e.g., Q-learning [37]).

Policy-gradient based approaches aim at directly learning the
mapping function πθ . Using the “log-trick” [41], gradients of the
expected cumulative rewards with respect to policy parameters θ
can be derived as:

Eτ∼πθ [R(τ )∇θ logπθ (τ )]. (2)

In on-line RL environments, it’s easy to estimate the expectation.
However, under the recommendation settings, to avoid recommend-
ing irrelevant items to users, the agent must be trained using the
historical logged data. Even if the RL agent can interact with live
users, the actions (recommended items) may be controlled by other
recommenders with different policies since many recommendation
models might be deployed in a real live recommender system. As a
result, what we can estimate from the batched (logged) data is

Eτ∼β [R(τ )∇θ logπθ (τ )], (3)

where β denotes the behavior policy that we follow when generat-
ing the training data. Obviously, there is distribution discrepancy



Q(s0, x1) = reward of click +maxa Q(s1, a)

x1:t {x1, x2, ..., xt−1, xt}
click purchase click click

Q(s1, x2) = reward of purchase +maxa Q(s2, a)

Q(s0, x
−

1
) = ? Q(s1, x

−

2
) = ? ** no learning constraints **

argmaxQ(s, a) = ? ** fails to perform ranking **

Figure 2: Q-learning fails to learn a proper preference rank-
ing because of data sparsity and the lack of negative feed-
back. x−1 and x−2 are unseen (negative) items for the corre-
sponding timestamp.

between the target policy πθ and the behavior policy β . Applying
policy-gradient methods for recommendation using this data is
thus infeasible.

Value-based approaches first calculate the Q-values (i.e., Q(s,a),
the value of an action a at a given state s) according to the Bellman
equation while the action is taken by a = argmax Q(s,a). The one-
step temporal difference (TD) update rule formulates the target
Q(st ,at ) as

Q(st ,at ) = r (st ,at ) + γ max
a′

Q(st+1,a′). (4)

One of the major limitation of implicit feedback data is the lack
of negative feedback [31, 43], which means we only know which
items the user has interacted with but have no knowledge about the
missing transactions. Thus there are limited state-action pairs to
learn from and Q-values learned purely on this data would be sub-
optimal as shown in Figure 2. As a result, taking actions using these
Q-values by a = argmax Q(s,a) would result in poor performance.
Even though the estimation ofQ(s,a) is unbiased due to the greedy
selection of Q-learning2, the distribution of s in the logged data is
biased. So the distribution discrepancy problem of policy gradient-
based methods still exists in Q-learning even though the Q-learning
algorithm is “off-policy” [7].

2.3 Related Work
Early work focusing on sequential recommendation mainly rely
on Markov Chain (MC) models [5, 12, 32] and factorization-based
methods [15, 30]. Rendle et. al [32] introduced to use first-order
MC to capture short-term user preferences and combined the MC
with matrix factorization (MF) [24] to model long-term preferences.
Methods with high-order MCs that consider more longer interac-
tion sequences were also proposed in [11, 12]. Factorization-based
methods such as factorization machines (FM) [30] can utilize the
previous items a user has interacted with as context features. The
general factorization framework (GFF) [15] models a session as the
average of the items that the user interacted within that session.

MC-based methods face challenges in modeling complex se-
quential signals such as skip behaviors in the user-item sequences
[38, 42] while factorization-based methods do not model the order
of user-item interactions. As a result, plenty of deep learning-based
approaches have been proposed to model the interaction sequences
more effectively. [14] proposed to utilize gated recurrent units (GRU)

2We don’t consider the bias introduced by the steps of TD learning. This is not related
to our work.

[6] to model the session. [38] and [42] utilized convolutional neu-
ral networks (CNN) to capture sequential signals. [21] exploited
the well-known Transformer [40] in the field of sequential recom-
mendation with promising results. Generally speaking, all of these
models can serve as the model G described in section 2.1 whose
input is a sequence of user-item interactions while the output is a
latent representation s that describes the corresponding user state.

Attempts to utilize RL for recommendation have also been made.
To address the problem of distribution discrepancy under the off-
policy settings, [3] proposed to utilize propensity scores to per-
form off-policy correction. However, the estimation of propensity
scores has high variances and there is a trade-off between bias
and variance, which introduces additional training difficulties. [44]
proposed to utilize negative sampling along with Q-learning. But
their method doesn’t address the off-policy problem. Model-based
RL approaches [4, 34, 45] firstly build a model to simulate the en-
vironment in order to avoid any issues with off-policy training.
However, these two-stage approaches heavily depend on the accu-
racy of the simulator. Moreover, recent work has also been done
on providing slate-based recommendations [3, 4, 8, 19] in which ac-
tions are considered to be sets (slates) of items to be recommended.
This assumption creates an even larger action space as a slate of
items is regarded as one single action. To keep in line with exist-
ing self-supervised recommendation models, in this paper we set
the action to be recommending the top-k items that are scored by
the supervised head. We leave research in this area of set-based
recommendation as one of our future work directions.

Bandit algorithms which share the same reward schema and
long-term expectation with RL have also been investigated for
recommendation [25, 26]. Bandit algorithms assume that taking
actions does not affect the state [25] while in full RL the assump-
tion is that the state is affected by the actions. Generally speaking,
recommendations actually have an effect on user behavior [33]
and hence RL is more suitable for modeling the recommendation
task. Another related field is imitation learning where the policy is
learned from expert demonstrations [16, 17, 39]. Our work can be
also considered as a form of imitation learning as part of the model
is trained to imitate user actions.

3 METHOD
As discussed in section 2.2, directly applying standard RL algo-
rithms to recommender systems data is essentially unfeasible. In
this section, we propose to co-train a RL output layer along with
the self-supervised head. The reward can be designed according to
the specific demands of the recommendation setting. We first de-
scribe the proposed SQN algorithm and then extend it to SAC. Both
algorithms can be easily integrated with existing recommendation
models.

3.1 Self-Supervised Q-learning
Given an input item sequence x1:t and an existing recommendation
model G, the self-supervised training loss can be defined as the
cross-entropy over the classification distribution:

Ls = −
n∑
i=1

Yi loд(pi ),where pi =
eyi∑n

i′=1 e
yi′
. (5)



Yi is an indicator function and Yi = 1 if the user interacted with the
i-th item in the next timestamp. Otherwise, Yi = 0. Due to the fact
that the recommendation model G has already encoded the input
sequence into a latent representation st , we can directly utilize st
as the state for the RL part without introducing another model.
What we need is an additional final layer to calculate the Q-values.
A concise solution is stacking a fully-connected layer on the top of
G:

Q(st ,at ) = δ (sthTt + b) = δ (G(x1:t )hTt + b), (6)
where δ denotes the activation function, ht and b are trainable
parameters of the RL head.

After that, we can define the loss for the RL part based on the
one-step TD error:

Lq = (r (st ,at ) + γ max
a′

Q(st+1,a′) −Q(st ,at ))2 (7)

We jointly train the self-supervised loss and the RL loss on the
replay buffer generated from the implicit feedback data:

LSQN = Ls + Lq . (8)

Figure 1b demonstrates the architecture of SQN.
When generating recommendations, we still return the top-k

items from the supervised head. The RL head acts as a regularizer to
fine-tune the recommendation modelG according to our reward set-
tings. As discussed in section 2.2, the state distribution in the logged
data is biased, so generating recommendations using the Q-values
is problematic. However, due to the greedy selection of Q(st+1, ·),
the estimation ofQ(st ,at ) itself is unbiased. As a result, by utilizing
Q-learning as a regularizer and keeping the self-supervised layer as
the source of recommendations we avoid any off-policy correction
issues. The lack of negative rewards in Q-learning does also not
affect the methods since the RL output layer is trained on positive
actions and the supervised cross-entropy loss provides the negative
gradient signals which come from the denominator of Eq.(5).

To enhance the learning stability, we utilize double Q-learning
[10] to alternatively train two copies of learnable paramaters. Al-
gorithm 1 describes the training procedure of SQN.

3.2 Self-Supervised Actor-Critic
In the previous subsection, we proposed SQN in which the Q-
learning head acts as a regularizer to fine-tune the model in line
with the reward schema. The learned Q-values are unbiased and
learned from positive user-item interactions (feedback). As a result,
these values can be regarded as an unbiased measurement of how
the recommended item satisfies our defined rewards. Hence the
actions with high Q-values should get increased weight on the
self-supervised loss, and vice versa.

We can thus treat the self-supervised head which is used for
generating recommendations as a type of “actor” and the Q-learning
head as the “critic”. Based on this observation, we can use the Q-
values as weights for the self-supervised loss:

LA = Ls ·Q(st ,at ). (9)

This is similar to what is used in the well-known Actor-Critic (AC)
methods [23]. However, the actor in AC is based on policy gradient
which is on-policy while the “actor” in our methods is essentially
self-supervised. Moreover, there is only one base model G in SAC
while AC has two separate networks for the actor and the critic. To

enhance stability, we stop the gradient flow and fix the Q-values
when they are used in that case. We then train the actor and critic
jointly. Figure 1c illustrates the architecture of SAC. In complex
sequential recommendation models (e.g., using the Transformer
encoder as G [21]), the learning of Q-values can be unstable [29],
particularly in the early stages of training. To mitigate these issues,
we set a threshold T . When the number of update steps is smaller
than T , we perform normal SQN updates. After that, the Q-values
become more stable and we start to use the critic values in the self-
supervised layer and perform updates according to the architecture
of Figure 1c . The training procedure of SAC is demonstrated in
Algorithm 2.

3.3 Discussion
The proposed training frameworks can be integrated with existing
recommendation models, as long as they follow the procedure of
Figure 1a to generate recommendations. This is the case for most
session-based or sequential recommendation models introduced
over the last years. In this paper we utilize the cross-entropy loss as
the self-supervised loss, while the proposed methods also work for
other losses [13, 31]. The proposed methods are for general purpose
recommendation. You can design the reward schema according to
your own demands and recommendation objectives.

Due to the biased state-action distribution in the off-line setting
and the lack of sufficient data, directly generating recommendations
from RL is difficult. The proposed SQN and SAC frameworks can be
seen as attempts to exploit an unbiased RL estimator3 to “reinforce”
existing self-supervised recommendation models. Another way of
looking at the proposed approach is as a form of transfer learning
3In our case, the estimation of Q (s, a) is unbiased.

Algorithm 1 Training procedure of SQN
Input: user-item interaction sequence set X, recommendation

model G, reinforcement head Q , supervised head
Output: all parameters in the learning space Θ
1: Initialize all trainable parameters
2: Create G ′ and Q ′ as copies of G and Q , respectively
3: repeat
4: Draw a mini-batch of (x1:t ,at ) from X, set rewards r
5: st = G(x1:t ), s′t = G ′(x1:t )
6: st+1 = G(x1:t+1), s′t+1 = G

′(x1:t+1)
7: Generate random variable z ∈ (0, 1) uniformly
8: if z ≤ 0.5 then
9: a∗ = argmaxa Q(st+1,a)
10: Lq = (r + γQ ′(s′t+1,a

∗) −Q(st ,at ))2
11: Calculate Ls and LSQN according to Eq.(5) and Eq.(8)
12: Perform updates by ∇ΘLSQN
13: else
14: a∗ = argmaxa Q ′(s′t+1,a)
15: Lq = (r + γQ(st+1,a∗) −Q ′(s′t ,at ))2
16: Calculate Ls and LSQN according to Eq.(5) and Eq.(8)
17: Perform updates by ∇ΘLSQN
18: end if
19: until converge
20: return all parameters in Θ



Algorithm 2 Training procedure of SAC
Input: the interaction sequence set X, recommendation model G,

reinforcement head Q , supervised head, threshold T
Output: all parameters in the learning space Θ
1: Initialize all trainable parameters
2: Create G ′ and Q ′ as copies of G and Q , t = 0
3: repeat
4: Draw a mini-batch of (x1:t ,at ) from X, set rewards r
5: st = G(x1:t ), s′t = G ′(x1:t )
6: st+1 = G(x1:t+1), s′t+1 = G

′(x1:t+1)
7: Generate random variable z ∈ (0, 1) uniformly
8: if z ≤ 0.5 then
9: a∗ = argmaxa Q(st+1,a)
10: Lq = (r + γQ ′(s′t+1,a

∗) −Q(st ,at ))2
11: if t ≤ T then
12: Perform updates by ∇ΘLSQN
13: else
14: LA = Ls ×Q(st ,at ), LSAC = LA + Ls
15: Perform updates by ∇ΘLSAC
16: end if
17: else
18: a∗ = argmaxa Q ′(s′t+1,a)
19: Lq = (r + γQ(st+1,a∗) −Q ′(s′t ,at ))2
20: if t ≤ T then
21: Perform updates by ∇ΘLSQN
22: else
23: LA = Ls ×Q ′(s′t ,at ), LSAC = LA + Ls
24: Perform updates by ∇ΘLSAC
25: end if
26: end if
27: t = t + 1
28: until converge
29: return all parameters in Θ

whereby the self-supervised model is used to “pretrain” parts of
the Q-learning model and vice versa.

4 EXPERIMENTS
In this section, we conduct experiments4 on two real-world sequen-
tial recommendation datasets to evaluate the proposed SQN and
SAC in the e-commerce scenario. We aim to answer the following
research questions:

RQ1: How do the proposed methods perform when integrated
with existing recommendation models?

RQ2:How does the RL component affect performance, including
the reward setting and the discount factor.

RQ3: What is the performance if we only use Q-leaning for
recommendation?

In the following parts, we will describe the experimental settings
and answer the above research questions.

4The implementation can be found at https://drive.google.com/open?id=1nLL3_knhj_
RbaP_IepBLkwaT6zNIeD5z

Table 1: Dataset statistics.

Dataset RC15 RetailRocket

#sequences 200,000 195,523
#items 26,702 70,852
#clicks 1,110,965 1,176,680
#purchase 43,946 57,269

4.1 Experimental Settings
4.1.1 Datasets. We conduct experiments with two public accessi-
ble e-commerce datasets: RC155 and RetailRocket6.

RC15. This is based on the dataset of RecSys Challange 2015.
The dataset is session-based and each session contains a sequence
of clicks and purchases. We remove the sessions whose length
is smaller than 3 and then sample 200k sessions, resulting into
a dataset which contains 1,110,965 clicks and 43,946 purchases
over 26702 items. We sort the user-item interactions in one session
according to the timestamp.

RetailRocket. This dataset is collected from a real-world e-
commerce website. It contains sequential events of viewing and
adding to cart. To keep in line with the RC15 dataset, we treat views
as clicks and adding to cart as purchases. We remove the items
which are interacted less than 3 times and the sequences whose
length is smaller than 3. The final dataset contains 1,176,680 clicks
and 57,269 purchases over 70852 items.

Table 1 summarizes the statistics of the two datasets.

4.1.2 Evaluation protocols. We adopt cross-validation to evaluate
the performance of the proposed methods. The ratio of training,
validation, and test set is 8:1:1. We randomly sample 80% of the
sequences as training set. For validation and test sets, the evaluation
is done by providing the events of a sequence one-by-one and
checking the rank of the item of the next event. The ranking is
performed among the whole item set. Each experiment is repeated
5 times, and the average performance is reported.

The recommendation quality is measured with two metrics: hit
ration (HR) and normalized discounted cumulative gain (NDCG).
HR@k is a recall-based metric, measuring whether the ground-
truth item is in the top-k positions of the recommendation list. We
can define HR for clicks as:

HR(click) =
#hits among clicks

#clicks
. (10)

HR(purchase) is defined similarly with HR(click) by replacing the
clicks with purchases. NDCG is a rank sensitive metric which assign
higher scores to top positions in the recommendation list [20].

4.1.3 Baselines. We integrated the proposed SQN and SAC with
four state-of-the-art (generative) sequential recommendation mod-
els:

• GRU [14]: This method utilizes a GRU to model the input
sequences. The final hidden state of the GRU is treated as
the latent representation for the input sequence.

5https://recsys.acm.org/recsys15/challenge/
6https://www.kaggle.com/retailrocket/ecommerce-dataset

https://drive.google.com/open?id=1nLL3_knhj_RbaP_IepBLkwaT6zNIeD5z
https://drive.google.com/open?id=1nLL3_knhj_RbaP_IepBLkwaT6zNIeD5z
https://recsys.acm.org/recsys15/challenge/
https://www.kaggle.com/retailrocket/ecommerce-dataset


Table 2: Top-k recommendation performance comparison of different models (k = 5, 10, 20) on RC15 dataset. NG is
short for NDCG. Boldface denotes the highest score. ∗ denotes the significance p-value < 0.01 compared with the
corresponding baseline.

Models purchase click

HR@5 NG@5 HR@10 NG@10 HR@20 NG@20 HR@5 NG@5 HR@10 NG@10 HR@20 NG@20

GRU 0.3994 0.2824 0.5183 0.3204 0.6067 0.3429 0.2876 0.1982 0.3793 0.2279 0.4581 0.2478
GRU-SQN 0.4228∗ 0.3016∗ 0.5333∗ 0.3376∗ 0.6233∗ 0.3605∗ 0.3020∗ 0.2093∗ 0.3946∗ 0.2394∗ 0.4741∗ 0.2587∗

GRU-SAC 0.4394∗ 0.3154∗ 0.5525∗ 0.3521∗ 0.6378∗ 0.3739∗ 0.2863 0.1985 0.3764 0.2277 0.4541 0.2474
Caser 0.4475 0.3211 0.5559 0.3565 0.6393 0.3775 0.2728 0.1896 0.3593 0.2177 0.4371 0.2372
Caser-SQN 0.4553∗ 0.3302∗ 0.5637∗ 0.3653∗ 0.6417∗ 0.3862∗ 0.2742 0.1909 0.3613 0.2192 0.4381 0.2386
Caser-SAC 0.4866∗ 0.3527∗ 0.5914∗ 0.3868∗ 0.6689∗ 0.4065∗ 0.2726 0.1894 0.3580 0.2171 0.4340 0.2362
NItNet 0.3632 0.2547 0.4716 0.2900 0.5558 0.3114 0.2950 0.2030 0.3885 0.2332 0.4684 0.2535
NItNet-SQN 0.3845∗ 0.2736∗ 0.4945∗ 0.3094∗ 0.5766∗ 0.3302∗ 0.3091∗ 0.2137∗ 0.4037∗ 0.2442∗ 0.4835∗ 0.2645∗

NItNet-SAC 0.3914∗ 0.2813∗ 0.4964∗ 0.3155∗ 0.5763∗ 0.3357∗ 0.2977∗ 0.2055∗ 0.3906 0.2357∗ 0.4693 0.2557∗
SASRec 0.4228 0.2938 0.5418 0.3326 0.6329 0.3558 0.3187 0.2200 0.4164 0.2515 0.4974 0.2720
SASRec-SQN 0.4336 0.3067∗ 0.5505 0.3435∗ 0.6442∗ 0.3674∗ 0.3272∗ 0.2263∗ 0.4255∗ 0.2580∗ 0.5066∗ 0.2786∗

SASRec-SAC 0.4540∗ 0.3246∗ 0.5701∗ 0.3623∗ 0.6576∗ 0.3846∗ 0.3130 0.2161 0.4114 0.2480 0.4945 0.2691

Table 3: Top-k recommendation performance comparison of different models (k = 5, 10, 20) on RetailRocket. NG is
short for NDCG. Boldface denotes the highest score. ∗ denotes the significance p-value < 0.01 compared with the
corresponding baseline.

Models purchase click

HR@5 NG@5 HR@10 NG@10 HR@20 NG@20 HR@5 NG@5 HR@10 NG@10 HR@20 NG@20

GRU 0.4608 0.3834 0.5107 0.3995 0.5564 0.4111 0.2233 0.1735 0.2673 0.1878 0.3082 0.1981
GRU-SQN 0.5069∗ 0.4130∗ 0.5589∗ 0.4289∗ 0.5946∗ 0.4392∗ 0.2487∗ 0.1939∗ 0.2967∗ 0.2094∗ 0.3406∗ 0.2205∗

GRU-SAC 0.4942∗ 0.4179∗ 0.5464∗ 0.4341∗ 0.5870∗ 0.4428∗ 0.2451∗ 0.1924∗ 0.2930∗ 0.2074∗ 0.3371∗ 0.2186∗
Caser 0.3491 0.2935 0.3857 0.3053 0.4198 0.3141 0.1966 0.1566 0.2302 0.1675 0.2628 0.1758
Caser-SQN 0.3674∗ 0.3089∗ 0.4050∗ 0.3210∗ 0.4409∗ 0.3301∗ 0.2089∗ 0.1661∗ 0.2454∗ 0.1778∗ 0.2803∗ 0.1867∗
Caser-SAC 0.3871∗ 0.3234∗ 0.4336∗ 0.3386∗ 0.4763∗ 0.3494∗ 0.2206∗ 0.1732∗ 0.2617∗ 0.1865∗ 0.2999∗ 0.1961∗

NItNet 0.5630 0.4630 0.6127 0.4792 0.6477 0.4881 0.2495 0.1906 0.2990 0.2067 0.3419 0.2175
NItNet-SQN 0.5895∗ 0.4860∗ 0.6403∗ 0.5026∗ 0.6766∗ 0.5118∗ 0.2610∗ 0.1982∗ 0.3129∗ 0.2150∗ 0.3586∗ 0.2266∗

NItNet-SAC 0.5895∗ 0.4985∗ 0.6358∗ 0.5162∗ 0.6657∗ 0.5243∗ 0.2529∗ 0.1964∗ 0.3010∗ 0.2119∗ 0.3458∗ 0.2233∗
SASRec 0.5267 0.4298 0.5916 0.4510 0.6341 0.4618 0.2541 0.1931 0.3085 0.2107 0.3570 0.2230
SASRec-SQN 0.5681∗ 0.4617∗ 0.6203∗ 0.4806∗ 0.6619∗ 0.4914∗ 0.2761∗ 0.2104∗ 0.3302∗ 0.2279∗ 0.3803∗ 0.2406∗

SASRec-SAC 0.5623∗ 0.4679∗ 0.6127∗ 0.4844∗ 0.6505∗ 0.4940∗ 0.2670∗ 0.2056∗ 0.3208∗ 0.2230∗ 0.3701∗ 0.2355∗

• Caser [38]: This is a recently proposed CNN-based method
which captures sequential signals by applying convolution
operations on the embedding matrix of previous interacted
items.

• NItNet [42]: This method utilizes dilated CNN to enlarge
the receptive field and residual connection to increase the
network depth, achieving good performance with high effi-
ciency.

• SASRec [21]: This baseline is motivated from self-attention
and uses the Transformer [40] architecture. The output of the
Transformer encoder is treated as the latent representation
for the input sequence.

4.1.4 Parameter settings. For both of the datasets, the input se-
quences are composed of the last 10 items before the target times-
tamp. If the sequence length is less than 10, we complement the
sequence with a padding item. We train all models with the Adam
optimizer [22]. The mini-batch size is set as 256. The learning rate
is set as 0.01 for RC15 and 0.005 for RetailRocket. We evaluate on
the validation set every 2000 batches of updates. For a fair com-
parison, the item embedding size is set as 64 for all models. For
GRU4Rec, the size of the hidden state is set as 64. For Caser, we use
1 vertical convolution filter and 16 horizontal filters whose heights
are set from {2,3,4}. The drop-out ratio is set as 0.1. For NextItNet,
we utilize the code published by its authors and keep the settings
unchanged. For SASRec, the number of heads in self-attention is
set as 1 according to its original paper [21]. For the proposed SQN
and SAC, if not mentioned otherwise, the discount factor γ is set as
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Figure 4: Effect of reward settings on RetailRocket

0.5 while the ratio between the click reward (rc ) and the purchase
reward (rp ) is set as rp/rc = 5.

4.2 Performance Comparison (RQ1)
Table 2 and Table 3 show the performance of top-k recommendation
on RC15 and RetailRocket, respectively.

We observe that on the RC15 dataset, the proposed SQN method
achieves consistently better performance than the corresponding
baseline when predicting both clicks and purchases. SQN introduces
a Q-learning head which aims to model the long-term cumulative
reward. The additional learning signal from this head improves
both clicks and purchase recommendation performance because
themodels are now trained to select actionswhich are optimized not
only for the current state but also for future interactions. We can see
that on this dataset, the best performance when predicting purchase
interactions is achieved by SAC. Since the learned Q-values are used
as weights for the supervised loss function, the model is ”reinforced”
to focus more on purchases. As a result, the SAC method achieves
significant better results when recommending purchases. We can
assume that the strong but sparse signal that comes with a purchase
is better utilized by SAC.

On the RetailRocket dataset, we can see that both SQN and
SAC achieve consistent better performance than the corresponding
baseline in terms of predicting both clicks and purchases. This
further verifies the effectiveness of the proposed methods. Besides,
we can also see that even though SQN sometimes achieves the
highest HR(purchase), SAC always achieves the best performance
with respect to the NDCG of purchase. This demonstrates that the
proposed SAC is actually more likely to push the items which may
lead to a purchase to the top positions of the recommendation list.

To conclude, it’s obvious that the proposed SQN and SAC achieve
consistent improvement with respect to the selected baselines. This
demonstrates the effectiveness and the generalization ability of our
methods.

4.3 RL Investigation(RQ2)
4.3.1 Effect of reward settings. In this part, we conduct experi-
ments to investigate how the reward setting of RL affects the model
performance. Figure 3 and Figure 4 show the results of HR@10 and
NDCG@10 when changing the ratio between rp and rc (i.e., rp/rc )
on RC15 and RetailRocket, respectively. We show the performance
when choosing GRU as the base model. Results when utilizing other
baseline models show similar trends and are omitted due to space
limitation.

We can see from Figure 3a and Figure 4a that the performance
of SQN when predicting purchase interactions start to improve
when rp/rc increases from 1. It shows that when we assign a higher
reward to purchases, the introduced RL head successfully drives
the model to focus on the desired rewards. Performance start to
decrease after reaching higher ratios. The reason may be that high
reward differences might cause instability in the TD updates and
thus affects the model performance. Figure 3c and Figure 4c shows
that the performance of SAC when predicting purchase behaviours
also improves at the beginning and then drops with the increase of
rp/rc . It’s similar with SQN.

For click recommendation, we can see from Figure 3b and Figure
4b that the performance of SQN is actually stable at the beginning
(even increases a little) and then starts to decrease. There are two
factors for this performance drop. The first is the instability of RL as
discussed before. The second is that too much reward discrepancy
might diminish the relative importance of clicks which constitute
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Figure 6: SAC with different discount factors

the vast majority of the datapoints. This also helps to explain the
performance drop of SAC as shown in Figure 3d and Figure 4d.

In addition, observing the performance of SQN and SAC when
rp/rc = 1, we can find that they still perform better than the basic
GRU. For example, when predicting purchases on the RC15 dataset,
the HR@10 of SAC is around 0.54 according to Figure 3c while
the basic GRU method only achieves 0.5183 according to Table 2.
This means that even if we don’t distinguish between clicks and
purchases, the proposed SQN and SAC still works better than the
basic model. The reason is that the introduced RL head successfully
adds additional learning signals for long-term rewards.

4.3.2 Effect of the discount factor. In this part, we show how the
discount factor affects the recommendation performance. Figure 5
and Figure 6 illustrates the HR@10 and NDCG@10 of SQN and SAC
with different discount factors on the RC15 dataset. We choose GRU
as the base recommendation model. The results on RetailRocket
show similar trends and are omitted here. We can see that the
performance of SQN and SAC improves when the discount factor
γ increases from 0. γ = 0 means that the model doesn’t consider
long-term reward and only focuses on immediate feedback. This
observation leads to the conclusion that taking long-term rewards
into account does improve the overall HR and NDCG on both
click and purchase recommendations. However, we can also see
the performance decreases when the discount factor is too large.
Compared with the game control domain in which there maybe
thousands of steps in one MDP, the user interaction sequence is
much shorter. The average sequence length of the two datasets is
only 6. As a result, although γ = 0.95 or 0.99 is a common setting
for game control, a smaller discount factor should be applied under
the recommendation settings.
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Figure 7: Comparison of HRwhen only using Q-learning for
recommendations.
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Figure 8: Comparison of NDCGwhen only using Q-learning
for recommendations.

4.4 Q-learning for Recommendation (RQ3)
We also conduct experiments to examine the performance if we gen-
erate recommendations only using Q-learning. To make Q-learning
more effective when perform ranking, we explicitly introduce uni-
formly sampled unseen items to provide negative rewards [31, 44].
Figure 7 and Figure 8 show the results in terms of HR@10 and
NDCG@10 on the RC15 dataset, respectively. The base model is
GRU. We can see that the performance of Q-learning is even worse
than the basic GRU method. As discussed in section 2.2, directly
utilizing Q-learning for recommendation is problematic and off-
policy correction needs to be considered in that situation. However,
the estimation of Q-values based on the given state is unbiased
and exploiting Q-learning as a regularizer or critic doesn’t suffer
from the above problem. Hence the proposed SQN and SAC achieve
better performance.

5 CONCLUSION AND FUTUREWORK
Wepropose self-supervised reinforcement learning for recommender
systems. We first formalize the next item recommendation task and
then analysis the difficulties when exploiting RL for this task. The
first is the pure off-policy setting which means the recommender
agent must be trained from logged data without interactions be-
tween the environment. The second is the lack of negative rewards.
To address these problems, we propose to augment the existing
recommendation model with another RL head. This head acts as a
regularizer to introduce our specific desires into the recommenda-
tion. The motivation is to utilize the unbiased estimator of RL to
fine-tune the recommendation model according to our own reward
settings. Based on that, we propose SQN and SAC to perform joint



training of the supervised head and the RL head. To verify the
effectiveness of our methods, we integrate them with four state-of-
the-art recommendation models and conduct experiments on two
real-world e-commerce datasets. Experimental results demonstrate
that the proposed SQN and SAC are effective to improve the hit
ratio, especially when predicting the real purchase interactions.
Future work includes online tests and more experiments on other
use cases, such as recommendation diversity promotion, improving
watching time for video recommendation and so on. Besides, we
are also trying to extend the framework for slate-based recommen-
dation in which the action is recommending a set of items.
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